\qquad
\qquad

\qquad 1. I can state the $\mathbf{4}$ parts of the Kinetic Molecular Theory.	The five parts of the Kinetic Molecular Theory are: a. b. c. d.
___ 2. I can define an ideal gas.	Definition: ideal gas:
\qquad 3 I can state the conditions of pressure and temperature under which a gas will act "ideally".	A gas will act most "ideally" under the conditions of \qquad pressure and \qquad temperature.
\qquad 4. I can state the two elements that act ideally most of the time.	The two elements that act ideally most of the time are \qquad \& \qquad _.
\qquad 5. I can explain how pressure is created by a gas.	What causes gas molecules to create pressure?
\qquad 6. I can state the relationship between pressure and volume for gases (assuming constant temperature).	At constant temperature, as the pressure on a gas increases, the volume \qquad .
\qquad 7. I can state the relationship between temperature and volume for gases (assuming constant pressure).	At constant pressure, as the temperature on a gas increases, the volume \qquad .

\qquad 14. I can determine the vapor pressure of ethanol, ethanoic acid, propane, or water at a given temperature.	What is the vapor pressure of ethanol at $56^{\circ} \mathrm{C}$? What is the boiling point of propanone at STP?
___15. I can state the relationship	As the strength of IMF \qquad , vapor pressure
	In terms of IMF, will have the lowest vapor pressure, $\mathrm{H}_{2} \mathrm{O}$ or H_{2} ?
\qquad 16. I can use Dalton's Law to determine a partial pressure	Gas A and gas B (both unreactive) are allowed to mix. The total pressure is found to be 3.50 atm . If gas B was measured initially at 1.25 atm, what is the partial pressure of gas A ? a. $\quad 4.75 \mathrm{~atm}$ b. -2.25 atm c. 2.25 atm d. 1.25 atm
\qquad 17. I can convert between moles and liters at STP	$\mathrm{mols}=44.8 \mathrm{~L}$ \qquad $\mathrm{L}=2$ moles mols $=56.6 \mathrm{~L}$ $\mathrm{L}=.5$ moles
\qquad 18. I can determine what gas molecules will diffuse or effuse fastest based on GFM.	The \qquad molecule will diffuse the fastest. Determine which of the following will diffuse/effuse fastest. $\mathrm{H}_{2} \mathrm{O}$ $\mathrm{C}_{2} \mathrm{H}_{8}$ O_{2}

