	The five parts of the Kinetic Molecular Theory are:
1. I can state the 4 parts of the Kinetic Molecular Theory.	a. b. c.
	d.
2. I can define an ideal gas.	Definition: ideal gas:
3 I can state the conditions of pressure and temperature under which a gas will act "ideally".	A gas will act most "ideally" under the conditions of pressure and temperature.
4. I can state the two elements that act ideally most of the time.	The two elements that act ideally most of the time are &
5. I can explain how pressure is created by a gas.	What causes gas molecules to create pressure?
6. I can state the relationship between pressure and volume for gases (assuming constant temperature).	At constant temperature, as the pressure on a gas increases, the volume
7. I can state the relationship between temperature and volume for gases (assuming constant pressure).	At constant pressure, as the temperature on a gas increases, the volume

8. I can state the relationship	Ι
between temperature and pressure	
for gases (assuming constant	n a fixed container (AKA "has constant volume), as the temperature on a
volume).	gas increases, the pressure
9. I can state Avogadro's Hypothesis.	Avogadro's Hypothesis says
	A gas originally assumes 2.21 at $5(00 \text{ and } 101.2 \text{ bDs})$ What will its values of
	A gas originally occupies 2.3L at 56° C and 101.3 kPa. What will its volume
	be at 100 ⁰ C and 105.7 kPa?
10. I can remember to convert	
^o C to K when using the Combined	
Gas Law to determine changes in V,	
P, or T of a gas.	
11 L can define boiling point	Definition
11. I can define boiling point and vapor pressure.	Definition:
11. I can define boiling point and vapor pressure.	Definition: Boiling Point:
	Boiling Point:
	Boiling Point:
	Boiling Point:
and vapor pressure.	Boiling Point: Vapor Pressure:
and vapor pressure.	Boiling Point:
and vapor pressure. 12. I can state the conditions of temperature and pressure that are	Boiling Point: Vapor Pressure: The normal (STP) boiling point of a substance occurs at temperature of
and vapor pressure.	Boiling Point: Vapor Pressure:
and vapor pressure. 12. I can state the conditions of temperature and pressure that are	Boiling Point: Vapor Pressure: The normal (STP) boiling point of a substance occurs at temperature of 0C/K and a pressure of
and vapor pressure. 12. I can state the conditions of temperature and pressure that are	Boiling Point: Vapor Pressure: The normal (STP) boiling point of a substance occurs at temperature of
and vapor pressure. 12. I can state the conditions of temperature and pressure that are	Boiling Point: Vapor Pressure: The normal (STP) boiling point of a substance occurs at temperature of 0C/K and a pressure of
and vapor pressure.	Boiling Point: Vapor Pressure: The normal (STP) boiling point of a substance occurs at temperature of 0C/K and a pressure of
and vapor pressure. 12. I can state the conditions of temperature and pressure that are used for "normal" boiling points.	Boiling Point: Vapor Pressure: The normal (STP) boiling point of a substance occurs at temperature of 0C/K and a pressure of
and vapor pressure.	Boiling Point: Vapor Pressure: The normal (STP) boiling point of a substance occurs at temperature of 0C/K and a pressure of

14. I can determine the vapor pressure of ethanol, ethanoic acid,	What is the vapor pressure of ethanol at 56 ^o C?
propane, or water at a given temperature.	What is the boiling point of propanone at STP?
15. I can state the relationship	As the strength of IMF, vapor pressure
between the strength of IMF and vapor pressure.	·
	In terms of IMF, will have the lowest vapor pressure, $H_2 O$ or $H_2 ?$
16. I can use Dalton's Law to determine a partial pressure	Gas A and gas B (both unreactive) are allowed to mix. The total pressure is found to be 3.50 atm. If gas B was measured initially at 1.25
	atm, what is the partial pressure of gas A?
	a. 4.75 atm b2.25 atm
	c. 2.25 atm d. 1.25 atm
17. I can convert between moles and liters at STP	mols = 44.8 LL = 2 moles
	L = .5 moles
18. I can determine what gas	
molecules will diffuse or effuse fastest based on GFM.	The molecule will diffuse the fastest.
	Determine which of the following will diffuse/effuse fastest.
	H_2O C_2H_8 O_2