Name______
 Unit 7: Rxns and Stoich I Can Statements
 Period_____

	Balance the following chemical equation using the lowest whole number coefficients.		
	$\underline{}C_7 H_{10} + \underline{}O_2 \rightarrow \underline{}CO_2 + \underline{}H_2O$		
1. I can balance a chemical equation showing conservation of mass using the lowest whole number coefficients.	Al ₂ (SO ₄) ₃ +Ca(OH) ₂ >Al(OH) ₃ +CaSO ₄		
2. Given a list of	Classify the following reactions as synthesis, decomposition, single		
chemical reactions, I can	replacement, or double replacement.		
classify them as being a synthesis reaction,			
decomposition reaction,	A) Mg + 2AgNO ₃ \rightarrow Mg(NO ₃) ₂ + 2Ag		
single replacement reaction,	$\begin{array}{c} \text{A) } \text{Mg} + 2\text{AgNO}_3 \rightarrow \text{Mg(NO}_3)_2 + 2\text{Ag} \\ \text{B) } 2\text{Mg} + \text{O}_2 \rightarrow 2\text{MgO} \end{array}$		
or double replacement reaction.	C) MgCO ₃ \rightarrow MgO + CO ₂		
	D) MgCl ₂ + 2AgNO ₃ \rightarrow 2AgCl + Mg(NO ₃) ₂		
3. Given reactants and the typed of reaction, I can determine the products of a reaction	Single Replacement: Include PHASE		
	$K + Zn(NO_3)_2 \rightarrow _$		
	Li + Mg(OH)₂→		
	Double Replacement : Include PHASE		
	NaOH + PbNO ₃ →		
	Synthesis: Include PHASE		
	$H_2 + Br_2 \rightarrow _$		
	Decomposition: Include PHASE		
	NO →		
	Combustion: Include PHASE		
	$C_2H_2 + O_2 \rightarrow$		

4 Given a compound, I	Pbl ₂	CoCl ₃	BaSO4	
can use Table F to determine its solubility	NaCl	AgOH	Li3 PO4	
	Given the following balanced equation, state the mole ratios between the requested substances. C ₃ H ₈ (g) + 5O ₂ (g)> 3CO ₂ (g) + 4H ₂ O(I)			
5. Given a balanced equation, I can state the mole ratios between any of the reactants and/or products.			O ₂ isC ₃ H ₈ :O ₂ . CO ₂ isC ₃ H ₈ :CO ₂ .	
	The mole ratio	between C3H8 and	H ₂ O isC ₃ H ₈ :H ₂ O.	
	The mole ratio	between CO ₂ and C	D ₂ isCO ₂ :O ₂ .	
	The mole ratic	between H ₂ O and C	CO ₂ isH ₂ O:CO ₂ .	
6. I can define stoichiometry.	Definition: Stoichiometry			
	Using the equation from question #5, determine how many moles of O_2 are needed to completely react with 7.0 moles of C_3H_8 .			
7 Given the number of moles of one of the reactants or products, I can determine the number of moles of another reactant or product that is needed to completely use up the given reactant/product.		•	5, determine how many moles of of C3H8 completely react.	