\qquad
\qquad

\qquad 1. I can balance a chemical equation showing conservation of mass using the lowest whole number coefficients.	Balance the following chemical equation using the lowest whole number coefficients. $\mathrm{C}_{7} \mathrm{H}_{10}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$ \qquad $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+$ \qquad $\mathrm{Ca}(\mathrm{OH})_{2}$ \qquad \qquad $\mathrm{Al}(\mathrm{OH})_{3}+\ldots \mathrm{CaSO}_{4}$
\qquad 2. Given a list of chemical reactions, I can classify them as being a synthesis reaction, decomposition reaction, single replacement reaction, or double replacement reaction.	Classify the following reactions as synthesis, decomposition, single replacement, or double replacement. A) $\mathrm{Mg}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$ \qquad B) $2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$ \qquad C) $\mathrm{MgCO}_{3} \rightarrow \mathrm{MgO}+\mathrm{CO}_{2}$ \qquad D) $\mathrm{MgCl}_{2}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{AgCl}+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ \qquad
\qquad 3. Given reactants and the typed of reaction, I can determine the products of a reaction	Single Replacement: Include PHASE $\begin{aligned} & \mathrm{K}+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \\ & \mathrm{Li}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \end{aligned}$ \qquad \qquad Double Replacement : Include PHASE $\mathrm{NaOH}+\mathrm{PbNO}_{3} \rightarrow$ \qquad Synthesis: Include PHASE $\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow$ \qquad Decomposition: Include PHASE $\mathrm{NO} \rightarrow$ \qquad Combustion: Include PHASE $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow$ \qquad

| 4 Given a compound, I
 can use Table F to determine
 its solubility | Pbl_{2} | CoCl_{3} | NaCl_{2} |
| :--- | :--- | :--- | :--- |\quad| $\mathrm{BaSO}_{4}-$ |
| :---: |

	Given the following balanced equation, state the mole ratios between the requested substances. $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})---->3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
\qquad 5. Given a balanced equation, I can state the mole ratios between any of the reactants and/or products.	The mole ratio between $\mathrm{C}_{3} \mathrm{H}_{8}$ and O_{2} is \qquad $\mathrm{C}_{3} \mathrm{H}_{8}$: \qquad O_{2}. The mole ratio between $\mathrm{C}_{3} \mathrm{H}_{8}$ and CO_{2} is \qquad $\mathrm{C}_{3} \mathrm{H}_{8}$: \qquad CO_{2}. The mole ratio between $\mathrm{C}_{3} \mathrm{H}_{8}$ and $\mathrm{H}_{2} \mathrm{O}$ is \qquad $\mathrm{C}_{3} \mathrm{H}_{8}:$ \qquad $\mathrm{H}_{2} \mathrm{O}$. The mole ratio between CO_{2} and O_{2} is \qquad $\mathrm{CO}_{2}:$ \qquad O_{2}. The mole ratio between $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} is \qquad $\mathrm{H}_{2} \mathrm{O}$: \qquad CO_{2}.
\qquad 6. I can define stoichiometry.	Definition: Stoichiometry:
\qquad 7 Given the number of moles of one of the reactants or products, I can determine the number of moles of another reactant or product that is needed to completely use up the given reactant/product.	Using the equation from question \#5, determine how many moles of O_{2} are needed to completely react with 7.0 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$. Using the equation from question \#5, determine how many moles of CO_{2} are produced when 7.0 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$ completely react.

