Unit 6b
Moles!

Name \qquad

SKILLS

1. Count number of moles in a molecule
2. Calculate Gram Formula Mass
3. Convert Grams to Moles
4. Convert Moles To Grams
5. Empirical Formulas and Molecular FORMULAS
6. FIND AN EMPIRICAL FORMULA FROM \% COMPOSITION
7. CalCulate \% Composition
8. Calculate \% Composition of a Hydrate

Vocabulary:
Due: Test

Word	
Mole	
Gram Formula Mass	
Molecular Formula	
Empirical formula	
Percent Composition	
Hydrate	
Chemical Formula	
Ternary Compound	
Conversion Factor	

Unit 6 Resounces:

Counting moles of atoms in a formula:

$\mathrm{N}=\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$	
Compound	Number of atoms of Each element
NaCl	$\mathrm{Na}=\ldots \mathrm{Cl}=$
$\mathrm{CaCl}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Ca}=\ldots \quad \mathrm{Cl}=\ldots \ldots \mathrm{H}=\ldots \quad \mathrm{O}=$
NaOH	$\mathrm{Na}=\ldots \mathrm{O}=\ldots \mathrm{H}=$
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	$\mathrm{Ba}=$ \qquad $\mathrm{N}=$ \qquad $\mathrm{O}=$ \qquad

Skill 2: Calculating GFM of Atoms and Molecules

Molecules are too small a unit to count in chemistry. We use the unit called the mole to count in chemistry. It is just a number to represent a \qquad - WTATCOYOUGIT WHEN

- One mole is equal to 6.02×10^{23} atoms;
- One Mole of chicken wings means 6.02×10^{23} chicken wings

How did you determine the identity of your sample?

\qquad
\square One mole (\qquad) of an element is \qquad to the atomic mass of that element in grams.
\square Look up the atomic mass of the element and place the unit,
after the number!
\square Round to the tenths places!
Gram Formula Mass of Compounds is the sum of the GFM of the elements of the atoms in the compound.

$\mathrm{H}_{2} \mathrm{O}$:

BeCrO_{4} :

$\mathrm{NaNO}_{3}:$

Calculate the GFM and determine the name of the compound:

1) BaBr_{2}
2) $\mathrm{ScF}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
3) NaOH
4) NaCl
5) KHSO_{4}
6) $\mathrm{Ca}(\mathrm{OH})_{2}$

Example 1:

Chemistry is 40 minutes long.... how many seconds long is it?

Steps to Conversion Success!

1) Identify a given number and unit
2) Identify target unit
3) Create a conversion factor
4) Multiply
5) Solve

Target Unit: \qquad
Conversion Factor:

Example 2: Calendar

The school year is 180 days long...how many months is it?

Example 3: Measurement

How many meters is a 5 Km race? (1000 m in one 1 Km)

Skill 3: Gram to Mole Conversion:

- Step 1: Calculate the GFM of the compound given.
\square Step 2: Set up your conversion factor or use periodic table formula!

Remember:
Given * Conversion Factor

$$
\# \text { of moles }=\frac{\text { given mass }}{g \mathrm{fm}}
$$

How many moles of CO_{2} are in 44.0 g ?
.
\square

1) How many moles are in 39 grams of LiF?
Step 1: GFM: Step 2: \# moles:
2) How many moles are in 148 grams of Potassium Chloride?

Step 1: GFM:	Step 2: \# moles:

USE TABLE T FORMULA!!!
3) How many moles are in 49 grams of $\mathrm{H}_{2} \mathrm{SO}_{4}$?

Step 1: GFM:	Step 2: \# moles:

4) How many moles are in 168 grams of KOH ?

Step 1: GFM	Step 2: \# moles:

\square Step 1: Calculate the GFM of the compound given.
\square Step 2: Set up your conversion factor!
Remember: The units should cancel out, leaving only grams!! \square

How many grams of KOH are in 4.5 moles?

1) How many grams are present in .5 moles of CuSO_{4} ?

Step 1: GFM:	Step 2: \# grams:

2) How many grams are present in $.75 \mathrm{~mol} \mathrm{SO}_{2}$?

Step 1: GFM: $64.1 \mathrm{~g} / \mathrm{mol}$	Step 2: \# grams:

USE TABLE T FORMULA!!!
3) How many grams are present in 3.15 mol of $\mathrm{K}_{3} \mathrm{PO}_{4}$?

Step 1: GFM: $212.3 \mathrm{~g} / \mathrm{mol}$
Step 2: \# grams:
\square Empirical Formulas are formulas, which show the elements in a compound.
\square Ionic compounds are ALWAYS empirical formulas in lowest terms:
Ex: MgO
\square Covalent compounds (molecules formed between TWO \qquad - \qquad are NOT always in lowest terms.

Ex. $\mathrm{H}_{2} \mathrm{O}_{2}$
\square Molecular formulas show the number of each nonmetal present.

Molecular:	Empirical
$\mathrm{H}_{2} \mathrm{O}_{2}$	HO

Divide $\vec{b} \overrightarrow{b y}$ GCF

Molecular Formula	Empirical Formula	Molecular Formula	Empirical Formula
$\mathrm{H}_{2} \mathrm{O}$		$\mathrm{H}_{4} \mathrm{O}_{4}$	
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$		$\mathrm{C}_{3} \mathrm{H}_{9}$	
$\mathrm{~N}_{2} \mathrm{O}_{4}$	$\mathrm{P}_{4} \mathrm{O}_{10}$		
SiH_{4}		$\mathrm{C}_{5} \mathrm{H}_{12}$	
$\mathrm{~B}_{4} \mathrm{H}_{10}$	$\mathrm{Fe}(\mathrm{CO})_{3} \quad$ (Careful!)		

Below is a list of formulas. Write the empirical formula (if not already empirical) and identify the type of substance \& type of bonds inside the substance.

	Formula	Empirical formula (simplest ratio)	Type of Substance (ionic or covalent)	Type of Bonds (ionic and/or covalent)	Electrons are... (shared and/or transferred)
a.	$\mathrm{C}_{4} \mathrm{H}_{10}$				
b.	$\mathrm{C}_{3} \mathrm{H}_{6}$				
c.	$\mathrm{N}_{2} \mathrm{O}_{4}$				
d.	$\mathrm{Na}_{2} \mathrm{SO}_{4}$				
e.	$\mathrm{C}_{6} \mathrm{H}_{10}$				
f.	$\mathrm{Al}_{2} \mathrm{O}_{3}$				
g.	$\mathrm{NH}_{4} \mathrm{NO}_{3}$				
h.	$\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{11}$				
i.	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$				
j.	$\mathrm{S}_{2} \mathrm{O}_{4}$				

How to Calculating the Molecular formula:

\square Calculate GFM of the empirical formula
\square Divide the Molecular Mass (GFM) by the empirical mass to get the multiplier.
\square Multiply the subscripts of the empirical formula by the multiplier; these numbers become the subscripts of your new compound.
a. The empirical formula of a compound is NO_{2} and its molecular mass is $\mathbf{9 2 g}$. What is the molecular formula of this compound?

| GFM of Empirical Formula | Multiplier | Molecular Formula |
| :--- | :--- | :--- | :--- |
| | | |

b. The empirical formula of a compound is CH_{2} and it's molecular mass is 70 g . What is the molecular formula of this compound?

GFM of Empirical Formula	Multiplier		Molecular Formula

c. A compound has an empirical formula of $\mathrm{P}_{2} \mathrm{O}_{3}$ and a molar mass of $220.0 \mathrm{~g} / \mathrm{mol}$. Determine its molecular formula.

| GFM of Empirical Formula | Multiplier | Molecular Formula |
| :--- | :--- | :--- | :--- |
| | | |

d. A compound has an empirical formula of HO and a molecular mass (GFM) of 34 $\mathrm{g} / \mathrm{mole}$. What is the molecular formula?

GFM of Empirical Formula	Multiplier	Molecular Formula

e. A Compound has an empirical formula of $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{O}_{2}$ and a molecular mass (GFM) of $328 \mathrm{~g} / \mathrm{mole}$. What is the molecular formula?

GFM of Empirical Formula	Multiplier	Molecular Formula

Skill 7: Calculate Percent Composition
Formula for Percent
Composition on the
Reference Table:

HF	BaCl_{2}	$\mathrm{Mg}(\mathrm{CN})_{2}$
GFM:	GFM:	GFM:
\% H =	\% Ba =	\% Mg =
$\% \text { F = }$	$\% \mathrm{Cl}=$	$\% \text { C = }$ $\% N=$

Determine the percent by mass of the given element in the following compounds.
a. $\% \mathrm{O}$ in $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \quad(\mathrm{GFM}=400 . \mathrm{g})$
c. $\% \mathrm{O}$ in CuSO_{4} (GFM = 159.6 g)
b. $\% \mathrm{H}$ in $\mathrm{H}_{2} \mathrm{O} \quad$ (GFM $=18 \mathrm{~g}$)
d. $\% \mathrm{P}$ in $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \quad(\mathrm{GFM}=149 \mathrm{~g})$
\square Hydrates: \qquad compounds that have certain number of moles of \qquad trapped in the \qquad structure of 1 mole of the hydrate.

$$
\mathrm{Ex}: \mathrm{CuSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}
$$

\square Please Remember: The "•" DOES NOT mean to multiply!!
\square Actually Means: Two moles of water are trapped for every one mole of CaSO_{4}.
\square Anhydrous

Calculate the GFM			
1) $\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}$	2) $\mathrm{MgSO}_{4} \bullet 4 \mathrm{H}_{2} \mathrm{O}$		

Find the \% Composition of a Hydrate:
Please Note: Part: Water. Whole: Entire Compound, including water.
a. $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$

Short Answer:

Base your answer to the following question on A hydrate is a compound with water molecules incorporated into its crystal structure. In an experiment to find the percent by mass of water in a hydrated compound, the following data were recorded:

Mass of the crucible: $\mathbf{2 4 . 7} \mathbf{g}$
Mass of crystals and crucible: $\mathbf{4 0 . 2 g}$
Mass of crystals and crucible after heating: $\mathbf{3 7 . 5 g}$
What is the percent by mass of water in the sample?

