Skills:

- 1. Identifying Changes in Energy and Stability
- 2. Drawing Atoms, Lewis structures....Electron dot diagrams
- 3. Distinguish between types and properties of bonds
- 4. Ionic Lewis Structures

- 5. Covalent Lewis Structures
- 6. Polar and Non Polar Bonds
- 7. Polar and Non Polar Molecules
- 8. Shape of Covalent Molecules
- 10 Intermolecular Forces

Unit Vocabulary:	Due: Test Day
Word	Definition
Chemical Bond	
<u>B.A.R.F.</u>	
<u>Metallic Bond</u>	
lonic	
Covalent	
<u>Polar Bond</u>	
Non Polar Bond	
<u>Molecular Polarity</u>	
Intermolecular Force	
Hydrogen Bonding	

Unit 5 Resources:

Skill 1	: Iden	tify Changes in Energy and Stability					
	What	is a chemical bond? :	or			of	
		electrons to achieve a _	V	alence s	hell and	becom	е
		energy () in	the bonc	1			
	0	Bond breaking: energ	у (_ energy	/) →		
	0	Bonding making: en	ergy → _				_ process
<u>Exam</u>	ple:		В	Α	R	F	
2H ₂ +	· O ₂	→ 2H ₂ O					

_	For each phrase, check either "bond breaking" or "bond forming".				
		Bond Breaking	Bond Forming		
a.	Stability of the chemical system increases				
b.	Energy is released				
b.	$CI + CI \rightarrow CI_2$				
с.	exothermic				
d.	endothermic				
e.	$N_2 \rightarrow N + N$				
f.	Energy is absorbed				
g.	Stability of the chemical system decreases				

Practice:

Given the balanced equation representing a reaction: $O_2(g) + 2H_2(g) \rightarrow 2H_2O(g) + energy$

Which statement describes the energy changes in this reaction?

- 1) Energy is absorbed as bonds are formed, only.
- 2) Energy is released as bonds are broken, only.
- 3) Energy is absorbed as bonds are broken, and energy is released as bonds are formed.
- 4) Energy is absorbed as bonds are formed, and energy is released as bonds are broken.

Lewis Dot Diagrams represent_____ which are primarily involved in

	Atom in	Electron-dot structure		Atom in	Electron-dot structure
a.	Group 1, Period 3	Na•	h.	Group 2, Period 3	
b.	Group 14, Period 3		i.	Group 2, Period 4	
c.	Group 16, Period 5		j.	Group 12, Period 6	
d.	Group 1, Period 2		k.	Group 4, Period 5	
e.	Group 17, Period 4		١.	Group 17, Period 6	
f.	Group 14, Period 3		m.	Group 13, Period 2	
g	Group 1, Period 5		n.	Group 2, Period 2	

Octet Rule: lons are formed to reach a full _____, meaning a full _____ electron shell.

What is an ion?_____

Show the NEW electron configuration: 2-8-8

	lon	Electron-dot structure	Electron Configuration		lon	Electron-dot structure	Electron Configurat ion
a.	sodium Na⁺	[Na]+	2-8	h.	oxide O ²	[•••] ^{2–}	2-8
b.	aluminum Al ³⁺			i.	bromide Br-		
c.	calcium Ca ²⁺			j.	phosphide P ^{3_}		
d.	magnesium Mg ²⁺			k.	sulfide S ^{2_}		
e.	strontium Sr ²⁺			١.	iodide I-		
f.	rubidium Rb⁺			m	fluoride F-		
g.	gallium Ga ³⁺			n.	chloride Cl-		

Skill 4: Types	and	Properties	of	Chemical	Bonds
----------------	-----	------------	----	----------	-------

Observation:	
Why do you think this occurs?	

SAFETY GOOGLES MUST BE WORN AT ALL TIMES DURING LAB!

- 1) Complete an observation of color + texture
- 2) Record conductivity using probe alone and in water
- 3) Heat on burner with foil to determine relative melting point

Sample	Observation	Conductivity Alone	Conductivity in water	Melting Point (High or Low)	Type of elements involved
Paraffin Wax C ₄₄ H ₂₄ Cl ₆					
Salt NaCl					
Copper CU					
Iron Fe					
Copper Sulfate CuSO4					
Ammonium Nitrate (NH ₄)(NO ₃)					
Sugar C ₆ H ₁₂ O ₆					
Water H ₂ O					

Group the compounds used by their observed properties:

Set 1	Set 2	Set 3	Set 4
Properties used to classify:	Properties used to classify:	Properties used to classify:	Properties used to classify:

Teacher Sign Off: _____

Type of Bonding	Type of Bonding	Type of Bonding	Type of Bonding

Reasoning:
What type of bonding does H2O exhibit?
What evidence supports this?
In terms of bonding, explain why H_2O did not conduct electricity.

		Properties	
lonic Bonding	Formed wher	: bonds together	The name's Sond
	because of th	e	
		charged ions	
	each other.		
	Involves: A _	of	
	electrons to a		Saken, not Shared
	Typically occu	Jrs between a metal (loses electrons) and	a
	(electrons).	
	loni	c Bonding Properties:	
	1.	melting and boiling point	S
	2.	at room temp	perature
	3.		
	4.	electricity in	and
Polyatomic Bonding	Ionic bonds c	an also exist with a metal or nonmetal AN	D a
	Polyatomic io	n (see Reference Tables Table)	
	Α_	bonded (of electrons)
	gro	up of atoms that have a	
			_
	Properties:		

Covalent Bonding	Formed when: two atoms electrons in order to achieve a					
	arrangement of					
	Involves: two					
	Sometimes referred to as Caring!					
	Properties of Covalent Bonds:					
	1. Relatively melting and boiling points					
	2. Exist as a,, or at STP					
	3					
	4. Will electricity in ANY phase					
	5 soluble in water					
Metallic Bonding	 Metals have valence electrons and ionization energies. The valence electrons of metal atoms are known as a "" This means that the electrons are and can drift freely around the metal. A metallic bond consists of the of the free-floating electrons to the of the free-floating interval the electrons to the of the grademetal electrons are metal. 					
	ions. This difficciive force holds the metals together.					
	Properties:					
	conductors of electricity and heat					
	melting and boiling points Cutic body centered (tec) Cutic face centered (tec) Hexagonal Fe, V, Nb, Cr Al, Ni, Ag, Cu, Au Ti, Zn, Mg, Cd					
	soluble (able to dissolve) in water					
	Crystalline Structure of Metals					
	Metal atoms in crystals are arranged in very and pattern					

Checks for understanding:

	Match the follo Each answer may				
C) (Covalent Bond	I) Ionic Bond or Poly	atomic	M) Metallic	Bond
1. KBr	2. Cu	6. CaCl ₂	7. B	r ₂	
3. CO ₂	4. Pb(OH)	38. Na ₂ O	9.S	iO ₂	
5. CH₄		10.brass (C	Cu + Zn)		
	Pro Match the fo Each answer mo C) Covalent Bor	operties of Types of blowing statements to the ay be used once, more ad I) Ionic Bond	of Bonds: he three bor than once, M) M	nd types. or not at all. etallic Bond	
1. the stro	ongest bond	6. m	alleable and	d ductile	
2. condu	cts electricity as a s	olid7. co	onducts elec	ctricity when	dissolved in
3. alterno	iting positive and n	egative water			
particles		8. in	volves a trar	nsfer of electi	rons
4. sharing	electrons betweer	n two atoms9. in	volved in mo	plecules and	in network
5. positive	e ions in a "sea of e	lectrons" solids			
9. Which	element has a crys A) Bromine B	talline lattice through w) Calcium C) Carbon	hich electro D) Sulfur	ns flow freely	ΙŚ
10.Which liquid?	element has prope	rties of good electrical	conductivity	and luster a	ind exists as a
11.Circle 1	A) Hg B hose compounds c) Br C) I containing both ionic ai	D) H ₂ nd covalent	bonds?	
NaCl	CaCO ₃	PCI ₃	H ₂ SO	4	НОН
13. Explair	the difference bet	ween the circled and u	un-circled co	ompounds:	

Skill 5: Drawing Ionic Lewis Structures:

Reminder: Determine the charge of an ion

	Element	# of Valance e-	# of e- Gain or Lose	Ionic Charge
1	CI			
2	Na			
3	Mg			
4	0			
5	N			
6	AI			
7	Xe			

Steps to Draw Ionic Lewis Structure

- 1) Determine the type of bond!
- 2) Determine the ion charge formed by both atoms.... # of electrons gained or lost
- 3) Draw Brackets around both atoms
- 4) Label ion charge states
- 5) Draw valence electrons AFTER THE TRANSFER!!

Lewis Structure: NaCl
 Both Element Symbols shown
 TRANSFER of electrons is shown
 Relative charge states are shown

Draw the Lewis structure for the following:

BaCl ₂	All ₃	LiP ₃
K ₂ S	Na ₂ O	Al ₂ O ₃
		1

Check for understanding:

Draw an ionic bond for CaF_2

Draw an ionic bond for MgO

1. Draw the Lewis Structure for MgCl ₂	2. Draw the Lewis Structure for MgS
MgCl ₂	
3. Draw the Lewis Structure for KF	4. Draw the Lewis Structure for K ₂ O
5. Draw the Lewis Structure for $Be_3 N_2$	6. Draw the Lewis Structure for Ca_3P_2

Steps to Draw Covalent Lewis Structure (Ball and Stick)

- 1) Draw lewis structure of each atom
- 2) Draw circles around UNPAIRED ELECTRONS
- 3) Circles become bond line representing shared electrons
- 4) Draw valence electrons around each atom
- 5) Check that both have full octet

Multiple Covalent Bonds:

Bond Type	Number of Shared Electrons	Number of Shared PAIRS of e-	Example
Single Bond			HF
Double Bond			O ₂
Triple Bond			N ₂

Practice: For each, show bonding circles and final Lewis (ball and stick) Diagram

a) H ₂	b) Cl ₂
c) HCI	d) H ₂ O

Practice:

1. Which formulas represent one ionic compound and one molecular compound?	4. What is the total number of electron pairs shared between the two atoms in an O ₂ molecule?
A) N_2 and SO_2	A) 1 B) 2 C) 6 D) 4
B) Cl_2 and H_2S	
C) BaCl ₂ and N ₂ O ₄	
D) NaOH and $BaSO_4$	5 Which main of other and its all advantages have a based in
	5. Which pair of atoms will share electrons when a bond is formed between them?
	A) Ba and I B) Br and Cl
2. Which element forms an ionic compound when it reacts with lithium?	C) K and Cl D) Li and I
A) K B) Fe C) Kr D) Br	
	6. Which characteristic is a property of molecular substances?
3. Based on bond type, which compound has the highest	A) good heat conductivity
melting point?	B) good electrical conductivity
A) CH ₃ OH B) C ₆ H ₁₄	C) low melting point
C) CaCl ₂ D) CCl ₄	D) high melting point

Nonpolar Covalent BONDS:	
sharing of electrons	between two
ELECTRONEGATIVITIES ARE THE	
Example: Br ₂	
	Road Turco
	Bond Type
Polar Covalent BONDS:	g of electrons between two
pulling on electrons	
ELECTRONEGATIVITIES differences indicate t	he degree of character.
xample : HBr	
	Bond Type

Check for understanding: Draw covalent bonds for Cl_2 and CCl_4 and identify the BONDS as polar or nonpolar covalent.

Cl ₂
Bond Type

	CCl₄
Bond Type	

Molecular Polarity:		
Is the	molecule Polar or Non Polar? Look at the!	
Are there polar bonds? (Electronegativity difference?)	Yes No No No No No No No No No No	

HF	CCl ₄	O ₂
Bond Type	Bond Type	Bond Type
Molecular P	Molecular P	Molecular P

1) In each of the following, circle the bond with the most ionic character:

a) C-CI Na-CI CI-CI

b) C-F N-O Si-F

2) In which compound does the **bond** between the atoms have the least ionic character?

1) HF 2) HCI 3) HBr 4) HI

3) Label the following molecules as polar, nonpolar or ionic.

1) HCI _____ 2) NaCI _____

3) CCl ₄	
---------------------	--

4) AICI₃

SHAPES OF COVALENT MOLECULES: The shapes most commonly used are LINEAR, BENT, PYRAMID, and TETRAHEDRAL

LINEAR	BENT	PYRAMIDAL	TETRAHEDRAL
0C_0	Oxygen Hydrogen Hydrogen	Trigonal Pyramidal	

Molecule	Dot Diagram	Structural Formula	Polar/ Nonpolar BONDS	Polar/NP Molecule	Shape	Simulation confirmed?
HCI						
HF						
H ₂ O						
CH₄						
NH ₃						
CCl4						

EVIDENCE:

Compound	# of Drops on Penny (Indicate Most)	Rate of Evaporation (Fast or Slow)	Boiling Point (°C) Indicate higher /lower	Molecular Polarity (P/NP)	Type of IMF
Water					
нн			100°C		
Acetone					
$H \xrightarrow{C} C \xrightarrow{C} H$			57°C		
Forces: Forces of attraction between molecules!					

Hydrogen "Bonding":	Dipole-Dipole:	London Dispersion (Van der Waal Force)
<u>Strength:</u>	<u>Strength:</u>	<u>Strength:</u>

Let's PICK an IMF!

(Note: Ionic + Metallic Bonds are separate types of attraction and are stronger than the Hydrogen, Dipole or LD IMFs)

REASONING: Select and Complete!	
(Water/Acetone) has the strong attraction called and the properties	gest intermolecular force of erefore has the following
Two pieces of evidence here!	
which demonstrates that it's molecules are because they are more(weakly/strongly) o	(easier/harder) to separate, attracted!
	TEACHER Check!