

_8. I can draw a Lewis dot diagram to represent an ionic compound.	Draw Lewis dot diagrams for the following ionic compounds.
	LiBr
9. I can draw a Lewis dot diagram to represent a molecular (covalently bonded) compound.	$\mathrm{H}{2} \mathrm{O}$

	Which statement describes the process represented by this equation? A) A bond is formed as energy is absorbed. B) A bond is formed as energy is released. C) A bond is broken as energy is absorbed. D) A bond is broken as energy is released.
\qquad 15. I can explain the difference between a polar covalent bond and a nonpolar covalent bond in terms of the types of nonmetals involved.	Polar covalent bonds are formed when \qquad nonmetals share electrons unevenly. Nonpolar covalent bonds form when \qquad nonmetals share electrons evenly.
\qquad 16. I can explain how to determine the degree of polarity of a covalent bond.	The degree of polarity of a covalent bond is determined by the \qquad between the elements.
\qquad 26. I can explain why one covalent bond is more or less polar than another covalent bond, based on electronegativity difference.	Explain, in terms of electronegativity difference, why the bond between carbon and oxygen in a carbon dioxide molecule is less polar than the bond between hydrogen and oxygen in a water molecule.
\qquad 28. I can state, in order, the three questions that are asked to determine if a MOLECULE is polar or nonpolar.	When determining if a MOLECULE is polar or non-polar, the first question to ask is \qquad When determining if a MOLECULE is polar or non-polar, the second question to ask is \qquad When determining if a MOLECULE is polar or non-polar, the third question to ask is \qquad
\qquad 29. I can explain and apply the meaning of SNAP as it applies to determining molecule polarity.	SNAP means \qquad Why is a molecule of CH_{4} nonpolar even though the bonds between the carbon and hydrogen are polar?

	A) The shape of the CH_{4} molecule is symmetrical. B) The shape of the CH_{4} molecule is asymmetrical. C) The CH_{4} molecule has an excess of electrons. D) The CH_{4} molecule has a deficiency of electrons. Explain, in terms of charge distribution, why a molecule of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is polar.
\qquad 30. I can determine if a molecular is polar or nonpolar.	Determine which molecules are polar and which are nonpolar. Justify your answer. $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{CO}_{2}$ CH_{4}
\qquad 32. I can define intermolecular forces and give examples of each.	Definition: Intermolecular forces Examples:
\qquad 34. I can list the intermolecular forces from STRONGEST to WEAKEST.	Strongest \qquad $>$ \qquad Weakest
\qquad 36. I can state the relationship between polarity and IMF strength.	As the polarity of the molecule \qquad the strength of the IMF . \qquad
\qquad 38. Given the physical state of some substances, I can compare the relative strength of the IMF.	At STP, iodine $\left(\mathrm{I}_{2}\right)$ is a crystal and fluorine $\left(\mathrm{F}_{2}\right)$ is a gas. Compare the strength of the IMF in a sample of I_{2} at STP to the strength of the IMF in a sample of F_{2} at STP.

\qquad 39. Given the boiling points (or freezing points) of some substances, I can compare the relative strength of the IMF.	At STP, CF_{4} boils at -127.8 oC and NH_{3} boils at -33.3 oC . Which substance has stronger IMF? Justify your answer.
\qquad 40. I can explain and apply the meaning of "Hydrogen bonding is FON".	"Hydrogen bonding is FON" means_
	Which compound has hydrogen bonding between its molecules? A) CH_{4} B) CaH_{2} C) KNO_{3} D) $\mathrm{H}_{2} \mathrm{O}$

