Name _

Unit 3: Atomic Structure

Skills:

- 1. Interpreting Models of the Atom
- 2. Determining the number of subatomic particles
- 3. Determine P, e-, n for ions
- 4. Distinguish isotopes from other atoms/ions

- 5. Calculate WAAM!
- 6. Identify Valence Electrons and Electron configuration
- 7. Draw Bohr Diagrams
- 8. Apply excited State electron concept to e- configurations

Unit 3 Vocabulary	
Word	<u>Definition</u>
Atom	
Proton	
Neutron	
Electron	
Gold Foil Experiment	
Valence Electron	
Atomic Mass Number	
Weighted Average Atomic Mass	
Isotope	
lon	
Excited State	
Principle Energy Level	

Unit 3 Resources:

Travel through the stations as you travel in the time through the evolution of our scientific understanding of the atom!

Station 1: The Greeks! An Atomic Philosophy

Watch and answer:

What did Democritus call the "tiny, indivisible particle" which he believed to be the basis of all substances?

Plato and Aristotle did not ______ with Democritus and so his theory was ______ centuries.

Station 2: Dalton (1803)

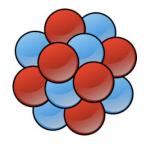
Read about Dalton's Four Main Ideas:

- 1. All matter consists of tiny particles called ______. He imagined them as tiny,______ spheres in various stages of motion.
- 2. _____ are indestructible and _____
- 3. All atoms of the same elements are _____ by their weights—meaning all atoms of the same element are identical!
- 4. In chemical reactions, atoms ______ in _____, _____, _____, number ratios.

Station 3: JJ Thomson (1897):

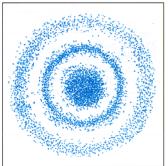
Watch link and complete:

In 1896, JJ Thomson used a ______ accelerator. Thomson ______ the voltage across the plates and he measured the amount of bending.


That allowed him to deduce the mass of the particle in the beam. Thompson discovered the first ______ particle, the ______.

Thompson	discovered that the atom is not the fundamental buildi	ing block of matter, there
are	object inside. Atoms are	hard, indivisible
spheres!		

Answer: Compare JJ Thomson's Mode of the atom to Dalton's. What has changed?

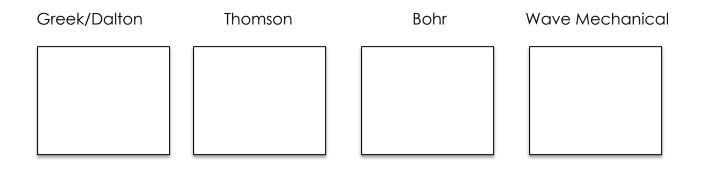

		Detecting screen	Gold foil
Station 4: Rutherford (1909) Gold Foil Experiment! Watch and Complete:			
Earnest Rutherford discovered the nu	ucleus!		Slit
Rutherford set up an experiment to direct a beam of particlesthrough a very thin,		foil. They are t	
detected by one of the two detectors.			emitter
Rutherford determined that most of the gold atom i particles go through. Occasiona by the positive nucleus.			
The atom has a smallnucleus, with m distributed	ostly	space, w	ith electrons
Station 5: The Bohr OR Planetary Model (1913) Watch and Answer:			E
Negatively charged electrons are found in concentration around the charged nucleus		•	Rucleus
We sometimes refer to the Bohr model as themodel.		Electron P Proton Neutron	
Electrons are found at fixed	orbiting c	ut t	distances
The path closest to the nucleus has theen	ergy level ar	d the energy	level is

______ the farther the electron is from the nucleus

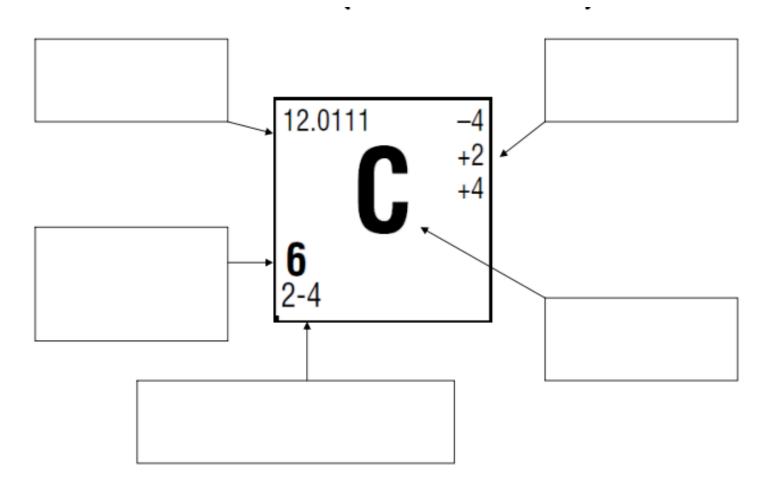
Station 6: Wave mechanical/ Quantum Model (Modern Model) Read and answer:

Schrödinger used ______ to describe the likelihood of finding an electron in a certain position.

This atomic model is known as the _____ model of the atom.



Unlike the Bohr model, the quantum mechanical model does not define the ______ of an electron, but rather, predicts the odds of the location of the electron—a cloud. This location is called an ORBITAL.


Where the cloud is most dense, the ______ of finding the electron is greatest.

Practice:

- 1) Which of the following did Rutherford's Gold Foil experiment prove?
 - a. That the atom was a uniformly dense sphere.
 - b. That the atom is mostly empty space with a dense, positive core.
 - c. That most the atom consists of a uniform positive "pudding" with small negative particles called electrons embedded throughout.
 - d. Thatelectronstravelaroundthenucleusinwell-definedpathscalledorbits.
- 2) J.J. Thomson's Cathode Ray Tube experiment led to the discovery of
 - a. the positively charged subatomic particle called the electron
 - b. the positively charged subatomic particle called the proton
 - c. the positively charged subatomic particle called the electron
 - d. the negatively charged subatomic particle called the electron
- 3) According to the Bohr Model,
 - a. electrons are found in areas of high probability called orbitals
 - b. electrons travel around the nucleus in circular paths called orbits
 - c. electrons are found in areas of high probability called orbits
 - d. electrons travel around the nucleus in random paths called orbitals
- 4) According to the Wave-Mechanical Model,
 - a. electrons are found in areas of high probability called orbitals
 - b. electrons travel around the nucleus in circular paths called orbits
 - c. electrons are found in areas of high probability called orbits
 - d. electrons travel around the nucleus in random paths called orbitals
- 5) Write the charge on the following subatomic particles:
 - a. Proton _____
 - b. Neutron _____
 - c. Electron _____
- 6) Draw a visual of the model:

Scientist	Model	Date	Discovered/Ideas	Model Description	Candy Model
Democritus	Greek Model	420 BC	Documented the idea of existence atoms	Solid sphere	
Dalton	Cannon Ball Model	1800	Proposed atomic theory Said that atoms make elements and elements combine to make	Solid sphere	
Thomson	Plum Pudding Model	1897	Discovered the electron	A sphere filled with a charged fluid, and negatively charged particles	
Rutherford	Nuclear model/ Planetary Model	1911	Through the " experiment" discovered that atoms have to be made up of mostly, dense, positively charged region in the center.	A dense region in the center, called theorbited by electrons like the rings around the planet Saturn.	
Bohr	Planetary Model	1913	Proposed that the electrons orbit in distinct orbits, but electrons could jump between these orbitals by gaining or losing energy.	Electrons orbited the nucleus in concentric circles called	
Schrodinger	Electron Cloud Model or Quantum Mechanical Model	1924	Instead of perfectly circular orbits, the electrons would be found in of space around the nucleus.	Electrons are found in clouds of space around the nucleus called	

**Nucleons = PROTONS and NEUTRONS; any subatomic particles found w/in the nucleus

Subatomic Particle	Charge	Relative Mass	Location	Symbol	How to Calculate
Proton					
Neutron					
Electron					

	Atomic Vocabulary:
1.	Atomic Mass Unit ()
2.	Atomic Number: number of in an atom. Identifies the
3.	Nuclear Charge: depends on the number of in the nucleus.
4.	Atomic Charge: The total of an atom is ALWAYS
	(# of protons # of electrons)
5.	Mass Number: Mass number =
6.	Average Atomic Mass: Theof all isotopes' atomic mass, found in the
	top of the periodic table square.
7.	lon: Having a positive or charge due to increased or
	number of electrons.
8.	: Two atoms with the same number of protons but a different
	number of neutrons!

Symbol	# Protons	# Neutrons	# Electrons	Atomic Number	Mass Number	Nuclear Charge	Nuclear Symbol
Cl-35	17	18	17	17	35	17	35 Cl 17
	15	16					
C-14		8					
			8				16 0 8
Ar-40		22					

Skill 3: Determine protons, electrons + neutrons for ions

lons: An atom that has		_
(# of protons does	# of electrons)	
ANion: A charged ion, meaning than number of electrons. The atom gets <i>Example:</i>		
Cation: A charged ion, meaning tha number of electrons. The atom gets Example:	ıt it has a certain 	
²³ 11 Na +1		

Atomic Number:	 # of protons:	
Mass Number:	 # of neutrons:	
lon Charge:	 # of electrons:	
Type of lon:		

Fill out the missing data below:

Question	lon	Mass #	Atomic #	# of Nucleons	# of p	# of n	# of e-	Lost or Gained Electrons
1	⁴¹ 19K ⁺¹							
2	⁸⁰ 35Br - 1							
3	²⁵ 12Mg ⁺²							
4			22			25	19	
5	¹³⁸ La+3							

Skill 4: Identify Isotopes

Isotope: Atoms of the same element, but different number of	and
different	

Isotopes of Hydrogen							
Protons	Neutrons	Mass Number	Symbol				

Mass notation: Shows the eler C – 14	nent symbol and the p n e	of the atom only.
Isotopic Notation: shows the	of an atom lo	ng with
⁰₄ Be	pne [.]	

Practice:

- 1. Se-79. Does its MASS exactly match the periodic table? ______...._ Find the number of neutrons in an atom of Se-79.
- 2. Find the number of neutrons in an atom of $^{\rm 52}_{\rm 24}\,\rm Cr$
- . Which symbols represent atoms that are isotopes of each other?
- A) ¹⁴C and ¹⁴N B) ¹⁶O and ¹⁸O
- C) ¹³¹I and ¹³¹I D) ²²²Rn and ²²²Ra

Isotope name	atomic #	mass #	# of protons	# of neutrons	# of electrons
5 boron-10					
5 boron-11					

Skill 5: Calculate the Weighted Average Atomic Mass (WAAM!) of an element

Atomic Mass: The mass number of a given nucleus must be a whole number because it is the sum of the number of ______ and _____ in the nucleus. So why isn't the mass of each a whole number......

Weighted Average Atomic Mass: The _____ mass of the naturally occurring

IOW TO FIND THE V	VEIGHTED AVERAGE ATOMIC MASS (W.A.A.M.!)
Avg. Atomic = Mass	= <u>(mass)(%) + (mass)(%) .</u> 100

1. Carbon has two naturally occurring stable isotopes. Most carbon atoms-98.89% are C-12, while the remaining 1.108% are C-13. What is the atomic mass of carbon?

2. 92.21% of Si is found to be 27.98 amu, 4.70% is found to be 28.98 amu, and the remaining 3.09% is found to be 29.97. Calculated the atomic mass of carbon

- Calculate the Average Atomic Mass for the following: 93.12% of K-39 6.88% of K-41
- 4. A new element, Tyserium (Ty), has recently been discovered and consists of two isotopes. One isotope has a mass of 331 g/mol and is 35.0 % abundant. The other isotope is 337 g/mole and is 65.0 % abundant. What is the mass of Ty as it appears on the periodic table?

A)	332 g/mol	C) 334 g/mol
B)	333 g/mol	D) 335 g/mol

Average Atomic Mass Practice Station

1)	2)	3)
4)		
4)	5)	6)

Calculate the atomic mass of each of the following isotopes. SHOW ALL WORK.

	Element	Mass	Percent Abundanc
1)	copper-63	62.9396 amu	69.17%
	copper-65	64.9278 amu	30.83%

2)	uranium-235	235.0439 amu	0.72%
	uranium-238	238.0510 amu	99.28%

3)	hydrogen-1	1.0078 amu	99.985%
	hydrogen-2	2.0140 amu	0.015%

4)	element Q-8	8.0 amu	10.0%
	element Q-9	9.0 amu	20.0%
	element Q-10	10.0 amu	70.0%

Skill 6: Identify valence electrons and electron configurations

What are Valence Electrons?	
	_ Involved in
Where do we find how many t	here are for each atom?

Electron Configurations: (See Ref. Tabs) Shows how electrons are distributed in each atom

Skill 7: Drawing Bohr Diagrams:

Question	lon Notation	Mass #	Atomic #	# of Nucleo ns	# of p	# of n	# of e-	Electron configuration
1					15	16	18	
2	32 S - 2							
3					34	45	36	
4	¹³⁵ 55 Cs +1							
5			43			55	36	
6		92	41				36	

Skill 7: Draw Bohr Models to represent the Atom

Bohr Models: How we represent_

Drawing Atom with Principle Energy Levels

O (Oxygen)	Valence e [.] :				
	Kernel e-:				
O ²⁻ (oxygen)	H (Hydrogen)	Al ³⁺ (Aluminum)			
C-14	Mg (Magnesium)	He (Helium)			
N (Nitrogen)	Cl (Chlorine)	F (Fluorine)			
n (ninogen)					

Skill 8: Apply excited State electron concept to e- configurations

- Electron shells fill up in a particular order: 2 AND 8 ARE THE MAGIC NUMBERS indicating a full octet or full valence shell
- Principal energy level: ______
- □ The rule that guides # of electrons in a configuration is _____, where n= the number of shells (PEL)
- □ The electron configuration on the reference table is called a state.

Ground State of Aluminum (AI):

But when we add energy...

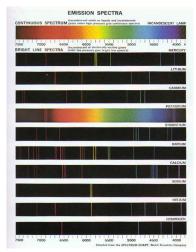
Excited State Configurations: if ______ gain/absorb

____, they can move to an

EXCITED STATE (Higher PEL)! When they fall back down, they _____

Excited State of Aluminum (AI):_____

We can use this to identify elements!


- □ **Bright Line Spectra:** Light (energy) emitted when excited electrons to the ground state.
 - Each spectrum is unique and can be used to determine the of an element like a fingerprint!
- □ As the electron shell number increases, the amount of energy

Practice:

Which electron configuration could represent a strontium atom in the excited state?

1) 2-8-18-7-1 3) 2-8-18-8-1 2) 2-8-18-7-3 4) 2-8-18-8-2

Element	Ground State	Total # of Electrons	Excited State	Total # of Electrons
Boron				
Magnesium				

