Name
Unit 2 - Matter and Energy Practice Test
Date \qquad
For each statement or question, choose the number of the word or expression that best completes the statement or answers the question.
\qquad 1. At STP, which 5.0-gram sample of matter take the shape of its container but retains a definite volume?

1) $\mathrm{Br}_{2}(\mathrm{~g})$
2) $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$
3) $\mathrm{KCl}(\mathrm{aq})$
4) $\mathrm{Xe}(\mathrm{g})$
\qquad 2. Which statement best describes the shape and volume of a sample of $\mathrm{O}_{2}(\mathrm{~g})$?
5) It has a definite shape and a definite volume 3) It has a definite shape and no definite volume.
6) It has no definite shape and a definite volume.
7) It has no definite shape and no definite volume.
\qquad 3. Which of the following is a homogeneous mixture?
8) pure water
9) $\mathrm{NaCl}(\mathrm{aq})$
10) Soil
11) iron nail
\qquad 4. Which substance can not be decomposed by a chemical change?
12) CoCl_{2}
13) $\mathrm{H}_{2} \mathrm{O}$
14) Mg
15) CuO
\qquad 5. Which selection contains two pure substances?
16) Cu (s) and Iron filings with sand
17) Cu (s) and $\mathrm{H}_{2} \mathrm{O}$ (s)
18) NaCl (aq) and Iron filings with sand
19) $\mathrm{NaCl}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{O}$ (s)
\qquad 6. A student found the melting point of a solid to be $60.6^{\circ} \mathrm{C}$. If the solid's actual boiling point is $70.4^{\circ} \mathrm{C}$, the experimental percent error is equal to
20) .139
21) 13.9
22) .16
23) 16.2
\qquad 7. During a laboratory experiment, a sample of a metal is found to have a mass of 14.50 grams and a volume of 3.7 milliliters. What is the density of this sample?
24) $3.9 \mathrm{~g} / \mathrm{mL}$
25) $2.72 \mathrm{~g} / \mathrm{mL}$
26) $4.5 \mathrm{~g} / \mathrm{mL}$
27) $2.9 \mathrm{~g} / \mathrm{ml}$
\qquad 8. Which statement describes a chemical property of Carbon?
28) Carbon is brittle
29) Carbon burns in the presence of oxygen
30) Carbon is not conductive
31) Carbon has a density of $2.698 \mathrm{~g} / \mathrm{cm}^{3}$
\qquad 9. An example of a physical property of an element is the element's ability to
32) form compounds with Fluorine
33) rust
34) Burn
35) form an aqueous solution
\qquad 10. Which mixture can be separated using the distillation process?
36) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OH}(1)$ and $\mathrm{SiO}_{2}(1)$
37) $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{NaCl}(\mathrm{aq})$
38) $\mathrm{NaCl}(\mathrm{s})$ and $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})$
39) $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})$
\qquad 11. What is the volume of 80 g of aluminum if the density of aluminum is $2.7 \mathrm{~g} / \mathrm{mL}$?
40) 216 mL
41) 29.6 mL
42) 499 mL
43) none of the above
\qquad 12. In which of the following would the particles have the lowest average kinetic energy?
44) 50 mL of $\mathrm{H}_{2} \mathrm{O}$ at $60^{\circ} \mathrm{C}$
45) 50 mL of $\mathrm{H}_{2} \mathrm{O}$ at $10^{\circ} \mathrm{C}$
46) 100 mL of $\mathrm{H}_{2} \mathrm{O}$ at $40^{\circ} \mathrm{C}$
47) 100 mL of $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$
\qquad 13. What is the final temperature of water if 380 grams of water at $36^{\circ} \mathrm{C}$ absorb 47880 joules of energy?
48) $36.0^{\circ} \mathrm{C}$
49) $66.0^{\circ} \mathrm{C}$
50) $30.1^{\circ} \mathrm{C}$
51) $40.00^{\circ} \mathrm{C}$
\qquad 14. The heat of fusion of a liquid is 400 Joules per gram. What is the minimum number of Joules needed to change 40.0 grams of the liquid to solid at it's melting point?
52) 10
53) 40
54) 16,000
55) 13,360
\qquad 15. Which phase change is involves the release of energy?
56) melting
57) sublimation
58) freezing
59) evaporation
\qquad 16. Starting as a solid, a 35 g sample of a substance is heated at a constant rate. The graph below shows the changes in the temperature of the sample. The heat of fusion of this substance is $7.65 \mathrm{~J} / \mathrm{g}$.

Calculate the amount of heat energy needed to melt the sample and how long it would take.

1) 267.75 J and 3 minutes
2) 300 J and 3 minutes
3) $11,690 \mathrm{~J} 4$ minutes
4) 267.75 J and 4 minutes
\qquad 17. The graph below represents the uniform heating of a sample of a substance starting as a solid below its melting point.

Which statement describes what happens to the energy of the particles of the sample during time interval $C D$?

1) Average kinetic energy increases, and potential energy remains the same.
2) Average kinetic energy decreases, and potential energy remains the same.
3) Average kinetic energy remains the same, and potential energy increases.
4) Average kinetic energy remains the same, and potential energy decreases
\qquad 18. When a substance is reacted with magnesium, the temperature of the surrounding system changes from 30 to $45^{\circ} \mathrm{C}$. This reaction is described as:
5) endothermic, with the release of energy
6) exothermic, with the release of energy
2) endothermic, with the absorption of energy
7) exothermic, with the absorption of energy

Record your answers in the spaces provided after each question. Be sure to show all of your work where appropriate.

Base your answer to the following question on the information provided.
20. A student conducted an experiment in which he placed 100.5 grams of Sodium Hydroxide (NaOH) into a container with 300 grams of Sulfuric Acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$. When the reaction was complete, there was 58.9 grams of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$.
a) How many grams of sodium sulfate was produced from this reaction? Show all work for credit.

$$
2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Na}_{2} \mathrm{SO}_{4}
$$

b) How does this illustrate the law of conservation of mass?
21. Classify the changes below as exothermic or endothermic and explain your answer in terms of energy and bonds.

An ice cube is melted.

Water turns to vapor.

Gas turns into a solid (directly)

Base your answer to the following questions on the simple representations for atoms of two elements:

$$
\begin{aligned}
\text { O } & =\text { an atom of an element } \\
& =\text { an atom of a different element }
\end{aligned}
$$

Draw a particle diagram representing each of the following situations:
22) A pure substance

23) a mixture of two diatomic elements

Use the following information to answer questions 28 and 29.
A piece of copper was cooled to a temperature of $-20^{\circ} \mathrm{C}$. The copper was then placed into a container of water at a temperature of $80^{\circ} \mathrm{C}$. The temperature of the water and the copper reaches equilibrium at $40^{\circ} \mathrm{C}$. (Mass of water $=100 \mathrm{~g}$)
28. State the direction of heat transfer between the copper and the water when the copper was placed in the water.
29. Show a numerical setup for calculating the amount of thermal energy change for the water.

Use the following graph to answer questions 30-32.
Below is the heating curve for a 50.0 -gram sample of water.
Label the diagram with the following attributes:

1) Boiling Point
2) Melting/Freezing Point
3) Phases present
4) Kinetic Energy behavior
5) Potential Energy behavior

30. Calculate the amount of heat required to completely vaporize the sample of water?
31. Calculate the amount of heat energy required to completely melt the sample of water?
32. Explain, in terms of heat of fusion and heat of vaporization, why the answer to question 30 is so much larger than the answer to question 31.
