Date					
For each statement or q or answers the question	uestion, choose the n	umber of the	word or expression	that best completes the statement	
1. At STP, which 3 1) Br ₂ (g)	5.0-gram sample of m 2) Fe(NO ₃) ₂ (s	natter take the s)	e shape of its contain 3) KCl(aq)	er but retains a definite volume? 4) Xe(g)	
2. Which statemen 1) It has a defi 2) It has no de volume.	It best describes the sl nite shape and a defir finite shape and a def	hape and volu nite volume finite volume.	ume of a sample of (3) It has a definit 4) It has no definit	D_2 (g)? te shape and no definite volume. hite shape and no definite	
3. Which of the fo 1) pure water	llowing is a homogen 2) NaCl (aq)	eous mixture 3) Soil	? 4) iron nail		
4. Which substanc 1) CoCl ₂	e can <i>not</i> be decompo 2) H ₂ O	osed by a che	mical change? 3) Mg	4) CuO	
5. Which selection 1) Cu (s) and In 2) Cu (s) and H	contains two pure su con filings with sand $I_2O(s)$	ubstances? 3) 4)	NaCl (aq) and Iron NaCl (aq) and H ₂ O	filings with sand (s)	
6. A student found the experimental	the melting point of percent error is equa	a solid to be ll to	60.6°C. If the solid'	s actual boiling point is 70.4°C,	
1).139	2) 13.9		3).16	4) 16.2	
7. During a laborative volume of 3.7 n	tory experiment, a san nilliliters. What is the	mple of a met e density of th	tal is found to have a is sample?	a mass of 14.50 grams and a	
1) 3.9 g/mL	2) 2.72 g/mI		3) 4.5 g/mL	4) 2.9 g/ml	
8. Which statemen 1) Carbon is bri 2) Carbon is no	t describes a chemica ttle t conductive	al property of 3) 4)	Carbon? Carbon burns in the Carbon has a densit	presence of oxygen y of 2.698 g/cm ³	
9. An example of a 1) form compou 2) Burn	a physical property of ands with Fluorine	f an element i 3) 4)	s the element's abili rust form an aqueous sol	ty to ution	
10. Which mixture	e can be separated usi	ng the distilla	ation process?		
 C₂H₄OH(l) and SiO₂(l) CO₂(g) and NaCl(aq) 		3) 4)	3) NaCl(s) and C ₆ H ₁₂ O ₆ (aq) 4) CO ₂ (g) and C ₆ H ₁₂ O ₆ (aq)		
11. What is the vo	lume of 80 g of alum	inum if the de	ensity of aluminum	is 2.7 g/mL?	

Name_____

Unit 2 - Matter and Energy Practice Test

1) 216 mL 2) 29.6 mL 3) 499 mL 4) none of the above

12. In which of the	following would the p	articles have the lowest a	verage kinetic energy?	
1) 50 mL of H ₂ O at 60°C		3) 100 mL of H ₂ O at 40°C		
2) 50 mL of H ₂ 0	D at 10°C	4) 100 mL of H ₂ O at 25°C		
13. What is the fin	al temperature of water	if 380 grams of water at	36°C absorb 47880 joules of energy?	
1) 36.0°C	2) 66.0°C	3) 30.1°C	4) 40.00°C	
14. The heat of fus needed to chang	ion of a liquid is 400 Jo e 40.0 grams of the liq	oules per gram. What is the uid to solid at it's melting	he minimum number of Joules g point?	
1) 10	2) 40	3) 16,000	4) 13,360	
15. Which phase cl	hange is involves the re	lease of energy?		
1) melting	2) sublimation	3) freezing	4) evaporation	

16. Starting as a solid, a 35 g sample of a substance is heated at a constant rate. The graph below shows the changes in the temperature of the sample. The heat of fusion of this substance is 7.65 J/g.

Calculate the amount of heat energy needed to melt the sample and how long it would take.

1) 267.75J and 3 minutes

2) 300J and 3 minutes

3) 11,690J 4 minutes 4) 267.75 J and 4 minutes

____17. The graph below represents the uniform heating of a sample of a substance starting as a solid below its melting point.

Which statement describes what happens to the energy of the particles of the sample during time interval CD?

- 1) Average kinetic energy increases, and potential energy remains the same.
- 2) Average kinetic energy decreases, and potential energy remains the same.
- 3) Average kinetic energy remains the same, and potential energy increases.
- 4) Average kinetic energy remains the same, and potential energy decreases
- 18. When a substance is reacted with magnesium, the temperature of the surrounding system changes from 30 to 45°C. This reaction is described as:
 - 3) exothermic, with the release of energy
 - 2) endothermic, with the absorption of energy

1) endothermic, with the release of energy

4) exothermic, with the absorption of energy

Record your answers in the spaces provided after each question. Be sure to show all of your work where appropriate.

Base your answer to the following question on the information provided.

20. A student conducted an experiment in which he placed 100.5 grams of Sodium Hydroxide (NaOH) into a container with 300 grams of Sulfuric Acid (H_2SO_4). When the reaction was complete, there was 58.9 grams of water (H_2O).

a) How many grams of sodium sulfate was produced from this reaction? Show all work for credit.

2NaOH (aq) + H₂SO₄ (aq) \rightarrow 2H₂O (l) + Na₂SO₄

b) How does this illustrate the law of conservation of mass?

21. Classify the changes below as exothermic or endothermic and explain your answer in terms of energy and bonds.

An ice cube is melted.

Water turns to vapor.

Gas turns into a solid (directly)

Base your answer to the following questions on the simple representations for atoms of two elements:

= an atom of an element
 = an atom of a different element

Draw a particle diagram representing each of the following situations:

22) A pure substance

23) a mixture of two diatomic elements

Use the following information to answer questions 28 and 29.

A piece of copper was cooled to a temperature of -20 °C. The copper was then placed into a container of water at a temperature of 80°C. The temperature of the water and the copper reaches equilibrium at 40°C. (Mass of water =100g)

28. State the direction of heat transfer between the copper and the water when the copper was placed in the water.

29. Show a numerical setup for calculating the amount of thermal energy change for the water.

Use the following graph to answer questions 30 - 32.

Below is the heating curve for a 50.0-gram sample of water.

Label the diagram with the following attributes:

- 1) Boiling Point
- 2) Melting/Freezing Point
- 3) Phases present
- 4) Kinetic Energy behavior
- 5) Potential Energy behavior

- 30. Calculate the amount of heat required to completely vaporize the sample of water?
- 31. Calculate the amount of heat energy required to completely melt the sample of water?
- 32. Explain, in terms of heat of fusion and heat of vaporization, why the answer to question 30 is so much larger than the answer to question 31.