Unit 2: Matter and Energy

Skills:

1. Classify Types of Matter
2. Identify Phases of Matter
3. Density Application
4. Percent Error Calculation
5. Distinguish between $P+C$ properties
6. Distinguish Physical + Chemical changes
7. Identify methods of separation of matter
8. Apply Conservation of Matter and Energ
9. Draw and interpret heating/cooling curve
10. Distinguish KE and PE, endo or exothermic
11. Measurement of Heat

Unit 2: Vocabulary:

Word	Definition
Matter	
Mixture	
Homogenous	
Heterogeneous	
Element	Text
Compound	
Diatomic	
Potential Energy	
Kinetic Energy	
Phase Change	
Chemical Change	

Unit 2 Resounces:

Chemistry: The study of \qquad

Matter: Any object that has \qquad and takes up \qquad .

At each station around the room classify the materials as an ELEMENT, COMPOUND or MIXTURE! Record your observations and reasoning below! Be ready to share!

Station 1	Station 2	Station 3
Station 4	Station 5	
Station 7		Station 6

Substance: A substance is matter that has a definite and \qquad composition: contains the same material composition throughout the whole sample.

Element: \qquad be decomposed by chemical change.

- Made up of atoms
- Examples: Carbon (C), Nitrogen (N), Chlorine (CI), Magnesium (Mg)
- Can be diatomic: $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{Br}_{2} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{2}$

Compound: Combinations of elements, \qquad to one another.

- Can be broken down into separate elements
- Properties of individual elements are \qquad retained... $\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}$

Mixture: NOT chemically combined.... they can be separated by physical methods!

Homogeneous Also called a \qquad (aq) means "aqueous."

- $\mathrm{NaCl}(\mathrm{aq})$ is sodium chloride dissolved in water.

Heterogeneous (mechanical mixture) Has two or more visible separate parts

- Salad!

Homogenous Mixture
Classify the following as E (elements), C (compound) or M (mixture)
$\mathrm{H}_{2}(\mathrm{~g})$: \qquad $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$: \qquad
$\mathrm{CO}_{2}(\mathrm{aq}):$ \qquad Mg (s): \qquad
Air (g): \qquad $F_{2}(g):$ \qquad

Activity: Classification of Matter...in your hands!

Practice:

1. Which formula represents a mixture?
A) $\mathrm{NaCl}(\mathrm{s})$
B) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})$
C) $\mathrm{KCl}(\mathrm{s})$
D) $\mathrm{KCl}(\mathrm{aq})$
2. An example of a heterogeneous mixture is
A) soil
B) sugar
C) carbon monoxide
D) carbon dioxide
3. A compound differs from a mixture in that a compound always has a
A) homogeneous composition
B) maximum of two components
C) minimum of three components
D) heterogeneous composition
4. A substance that is composed only of atoms having the same atomic number is classified as
A) a compound
B) an element
C) a homogeneous mixture
D) a heterogeneous mixture
5. Which of these terms refers to matter that could be heterogeneous?
A) element
B) mixture
C) compound
D) solution

Skill 2: Identify Phases of Matter
The phase that matter is in depends on:
1.
2.

State (phase)	Symbol (subscript)	Shape	Volume	Visulize: Particle Arrangement
SOLID	(s)			
LIQUID Or aqueous	$\begin{gathered} \text { (I) } \\ \text { or } \\ (\mathrm{aq}) \end{gathered}$		Definite Volume	
GAS	(g)	Indefinite shape		

FYI: There are additional ones such as plasma, supercritical fluid, and degenerate gas.

Practice:

1 . Which grouping of the three phases of oxygen is listed in order from left to right for increasing distance between oxygen molecules?
A) gas, liquid, solid
B) liquid, solid, gas
C) solid, gas, liquid
D) solid, liquid, gas
2. Which statement best describes the shape and volume of an $\mathrm{H}_{2} \mathrm{O}(1)$ STP?
A) It has a definite shape and a definite volume.
B) It has a definite shape and no definite volume.
C) It has no definite shape and a definite volume.
D) It has no definite shape and no definite volume.
3. The arrangement of particles is most ordered in a sample of
A) $\mathrm{NaCl}(\mathrm{aq})$
B) $\mathrm{NaCl}(l)$
C) $\mathrm{NaCl}(\mathrm{g})$
D) $\mathrm{NaCl}(\mathrm{s})$
4. When a sample of $\mathrm{CO}_{2}(\mathrm{~s})$ becomes $\mathrm{CO}_{2}(\mathrm{~g})$, there is a change in
A) bond type
B) gram-formula mass
C) molecular polarity
D) particle arrangement
5. Given the particle diagram representing four molecules of a substance:

Which particle diagram best represents this same substance after a physical change has taken place?
A)

B)

C)

D)

Which phase of matter will have the greatest density? Lowest?

Mass: \qquad
Measured in: \qquad
Volume: \qquad

Measured in: \qquad
Density: \qquad
Measured in: \qquad
Equation (see reference tables):

Table S: Where all known element densities are listed. Which is greatest, Silicon or Lead?

Examples:

1. A person brings in what he thinks to be a gold ring to a jewelry store. The ring has a mass of 4.5 g and a volume of $0.233 \mathrm{~cm}^{3}$. Is this a gold ring? (Hint: find the density and compare it on Table S)

Equation and Answer:

Givens:

2. A piece of scrap metal made of iron has a volume of 305.5 cm^{3}. Find the mass of the iron.

Equation and Answer:

Skill 4: Use Percent Error formula for calculation

Essential Question: Will every measurement taken be perfectly accurate and precise?

A stick of gum is about 1 gram. Estimate the mass of a penny.
Estimate: \qquad g

Actual: \qquad g

Equation (see reference tables):

\square

Example:

The boiling point of water is $100^{\circ} \mathrm{C}$. You and your partner calculate it to be $99.1^{\circ} \mathrm{C}$. What is the percent error?

A student finds the density of copper to be $8.218 \mathrm{~g} / \mathrm{cm}^{3}$. The actual density of copper is $8.960 \mathrm{~g} / \mathrm{cm}^{3}$. Find the percent error in her measurement.

Practice:
A) A student determines the density of zinc to be 7.56 grams per millimeter. If the accepted density is 7.13 grams per millimeter, what is the percent error of this calculation?
B) A student takes an object with an accepted mass of 200 grams and measures it using a balance, she records the mass of the object as 196.5 g . What is her percent error?

Skill 5: Distinguish between physical and chemical PROPERTIES

Physical Properties	Chemical Properties
Properties of an element or compound that can be observed or measured	The ability of an element or substance to undergo a
	and form a
Examples of Physical Properties:	Examples of Chemical Properties:

Determine whether the following is a C (chemical) or P (physical) property

1. _ Water boils at 100 degrees Celsius
2. __ Water can be separated by electrolysis into hydrogen and oxygen
3. __ Sugar is capable of dissolving in water
4. __ Vinegar will react with baking soda
5. __ Yeasts acts on sugar to form carbon dioxide and ethanol
6. _ Wood is flammable

Practice:

1. An example of a physical property of an element is the element's ability to
A) react with an acid
B) react with oxygen
C) form a compound with chlorine
D) form an aqueous solution
2. At STP, which physical property of aluminum always remains the same from sample to sample?
A) mass
B) density
C) length
D) volume
3. Which is a chemical property of water?
A) It freezes.
B) It decomposes.
C) It evaporates.
D) It boils.
4. Which statement describes a chemical property that can be used to distinguish between compound A and compound B ?
A) A is a blue solid, and B is a white solid.
B) A has a high melting point, and B has a low melting point.
C) A dissolves in water, and B does not dissolve in water.
D) A does not burn in air, and B does burn in air
5. Which statement describes a chemical property of aluminum?
A) Aluminum is malleable.
B) Aluminum reacts with sulfuric acid.
C) Aluminum conducts an electric current.
D) Aluminum has a density of $2.698 \mathrm{~g} / \mathrm{cm}^{3}$ at STP.

Physical Change	Chemical Change
- It does NOT change \qquad it just changes \qquad - A change that does NOT affect a substance's chemical composition	- Changing \qquad into a \qquad \qquad - There will be a "evidence of chemical change"
Physical Change Phrases	Chemical Change Phrases
Remember: Phase changes are \qquad changes!	Evidence of Chemical Change Gas is produced Temperature \qquad A substance disappears A solid is formed A color change occurs A new \qquad is produced

Physical or Chemical Change: Determine whether C (chemical) or P (physical) change

1. ___ Iron rusts in damp environment
2. _- Dry ice, solid carbon dioxide, is sublimed at room temperature.
3. ___ Gasoline burns in the presence of oxygen
4. _ Hydrogen peroxide decomposes to water and oxygen
5. _ Burning coal
6. _ Cooking a steak

You CANNOT easily get back your original substances as something new has been formed. (Ever try to un-fry an egg?)

Differences in \qquad properties can be used to separate mixtures. Certain types of matter can be separated using various methods.

HETEROGENEOUS MIXTURES

1. Filtration: A process that separates a \qquad from a liquid based on the
\qquad of the particles.
2. Separatory Funnel: A process that separates two or more \qquad that will not mix with each other

- The liquid layer that is most dense will be on the \qquad ,
- Think about Thanksgiving Gravy!

HOMOGENEOUS MIXTURES

Distillation aka (Evaporation)

A process that separates out a \qquad (something

DISSOLVED in water) by their \qquad
\qquad points.

- Alcohol dissolved in water

- Salt dissolved in water
- Gasoline dissolved in water

Chromatography: A process that separates out the components of a mixture based on the rate of \qquad and molecular \qquad .

When a piece of filter paper is dipped into some ink and then placed into water, the water begins to rise by \qquad action.

1. By which process is a precipitate most easily separated from the liquid in which it is suspended?
A) neutralization
B) distillation
C) condensation
D) filtration
2. Which two physical properties allow a mixture to be separated by chromatography?
A) hardness and boiling point
B) density and specific heat capacity
C) malleability and thermal conductivity
D) solubility and molecular polarity
3. A beaker contains both alcohol and water. These liquids can be separated by distillation because the liquids have different
A) boiling points
B) densities
C) particle sizes
D) solubilities
4. Recovering the salt from a mixture of salt and water could best be accomplished by
A) evaporation
B) filtration
C) paper chromatography
D) density determination

Chemical Reaction Equation:

A chemical \qquad ALWAYS results in \qquad substance(s)!

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Conservation:

Mass, energy and charge cannot be created or destroyed in a chemical reaction

Identify the reactants and the products in the chemical equations to the right! Circle the reactants. Box the products.

If 30 grams of element X are reacted with 10 grams of element Y to form compound Z, what is the mass of the product?
a) 40 grams
b) 20 grams
C) 60 grams
d) 120 grams

Aluminum metal is reacted with oxygen to form aluminum oxide. How will the mass of the aluminum oxide compare to the combined masses of the aluminum metal and oxygen that formed it?
a) Equal
b) less
c) More

40 grams of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are condensed in a closed container. How many grams of $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ will there be when this process is done?
a) 50 grams
b) 40 grams
c) 20 grams
d) 130 grams

Stop and think: Is this a physical or chemical change?

1. If 50.0 grams of sodium reacts with chlorine to form 126 grams of sodium chloride. How many grams of chlorine reacted?
2. If 178.8 g of water is separated into hydrogen and oxygen gas, and the hydrogen gas has a mass of 20.0 g . What is the mass of the oxygen gas produced?

As potential energy \qquad , kinetic energy \qquad .
\square Energy is never lost! They are connected!! ($\mathrm{E}=\mathrm{K}+\mathrm{U}$)
\square Energy cannot be \qquad or \qquad only transferred! This
is called the \qquad of energy.

Heat Transfer: Heat always move from
\qquad objects to \qquad objects
\square Joule: Unit of measure for PE. 1KJ = \qquad J

Practice:

1. Different masses of copper and iron have the same
 temperature. Compared to the average kinetic energy of the copper atoms, the average kinetic energy of the iron atoms is
(1) 273 K less
(2) $200^{\circ} \mathrm{C}$ less
(3) 273 K more
(4) the same
2. As the temperature of a substance decreases, the average kinetic energy of its particles
(1) decreases
(2) increases
(3) remains the same

Phase changes and Heat: Where does the heat go?

	Endothermic	Exothermic
Word Dissection!		
Definition:		
Chemical Change		
Physical Change		

Additional Practice:

1. The burning of wood is best described as an
A) endothermic chemical change
B) endothermic physical change
C) exothermic chemical change
D) exothermic physical change
2. When ammonium chloride crystals are dissolved in water, the temperature of the water decreases. What does this temperature change indicate about the dissolving of ammonium chloride in water?
A) It is an endothermic reaction because it absorbs heat.
B) It is an endothermic reaction because it releases heat.
C) It is an exothermic reaction because it absorbs heat.
D) It is an exothermic reaction because it releases heat.
3. Which phase change is endothermic?
A) $\mathrm{H}_{2} \mathrm{O}(\mathrm{e}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
B) $\mathrm{I}_{2}(\mathrm{~g}) \rightarrow \mathrm{I}_{2}(\mathrm{~s})$
C) $\mathrm{Hg}(\mathrm{e}) \rightarrow \mathrm{Hg}(\mathrm{s})$
D) $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{~S}(\ell)$
4. Which of the following best describes exothermic chemical reactions?
A) They never release heat.
B) They always release heat.
C) They never occur spontaneously.
D) They always occur spontaneously.

5 . Which phase change is exothermic?
A) $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}($ i $)$
B) $\mathrm{H}_{2} \mathrm{O}(i) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
C) $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D) $\mathrm{H}_{2} \mathrm{O}(i) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Heating and Cooling Curves
Heating Curve: \qquad - Energy is being \qquad F

Sublimation:

Time

	$\mathrm{A} \rightarrow \mathrm{B}$	$\mathrm{B} \rightarrow \mathrm{C}$	$\mathrm{C} \rightarrow \mathrm{D}$	$\mathrm{D} \rightarrow \mathrm{E}$	$\mathrm{E} \rightarrow \mathrm{F}$
Kinetic Energy					
Potential Energy					
Phase					

Cooling Curve: \qquad - Energy is being \qquad

Temperature (Kinetic Energy)

Time

	$\mathrm{A} \rightarrow \mathrm{B}$	$\mathrm{B} \rightarrow \mathrm{C}$	$\mathrm{C} \rightarrow \mathrm{D}$	$\mathrm{D} \rightarrow \mathrm{E}$	$\mathrm{E} \rightarrow \mathrm{F}$
Kinetic Energy					
Potential Energy					
Phase					

Enthalpy of a Reaction: The amount of heat given off \qquad) or absorbed (endothermic) in a reaction can be calculated in three scenarios with three different formulas

1) When there is a temperature change!

Formula:
2) During the melting or freezing (fusion) phase change (no \qquad change!) Formula:
3) During the evaporating or condensation \qquad) phase change (no temp change!)
Formula:

The Variables:

Specific Heat Capacity (C):
\square Specific Heat for water: \qquad (Found on Table \qquad
Heat of fusion $\left(H_{f}\right)$:
\square Heat of Fusion for water: \qquad (Found on Table \qquad in Ref. Tabs)

Heat of Vaporization (H_{v}):
\square Heat of Vaporization for water: \qquad (Found on Table \qquad in Ref. Tabs)।

LeT'S PICK a Formula!

1) How many joules are absorbed when 50.0 g of water are heated from $30.2^{\circ} \mathrm{C}$ to $58.6^{\circ} \mathrm{C}$?

Step 1	Step 2	Step 3	Step 4
Determine Correct formula	Write down variables	Plug in variables	Solve

2) How many joules are required to melt 255 g of ice at $0.00^{\circ} \mathrm{C}$?
3) How many joules of heat energy are released when 50.0 g of water are cooled from $70.0^{\circ} \mathrm{C}$ to $60.0^{\circ} \mathrm{C}$?
4) What is the total number of joules required to completely boil 125 g of water at $100^{\circ} \mathrm{C}$ at 1 atmosphere?
5) 50.0 g of water goes from 289.6 K to 309.6 K .
A) Is heat energy released or absorbed? B) Calculate the amount energy.
6) A 15.75 -g piece of iron absorbs 1086.75 joules of heat energy, and its temperature changes from $25^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$. What is the specific heat capacity of iron?
(1) $1.0 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
(2) $4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
(3) $0.46 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
(4) $2.76 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
7) What is the total number of joules of heat needed to change 150 g of ice to water at $0.00^{\circ} \mathrm{C}$?
8) How many joules of energy are required to vaporize 423 g water at $100{ }^{\circ} \mathrm{C}$ and 1 atm ?
9) How many joules does it take to melt 423 g of water at $100^{\circ} \mathrm{C}$?
10) Compare the amount of heat required to vaporize a 200 .-gram sample of $\mathrm{H}_{2} \mathrm{O}(\ell)$ at its boiling point to the amount of heat required to melt a 200.-gram sample of $\mathrm{H}_{2} \mathrm{O}$ (s) at its melting point.
