\qquad

Unit 2 I Can Statements: Matter + Energy

\qquad 6. I can classify a change as physical or chemical.	Write " P " for physical or " C " for chemical on the line provided. \qquad copper (II) sulfate dissolves in water. \qquad copper reacts with oxygen to form solid copper (I) oxide. \qquad solid copper is melted. \qquad a chunk of copper is pounded flat. \qquad copper and zinc are mixed to form brass. \qquad a large piece of copper is chopped in half. \qquad copper reacts with bromine to form copper (II) bromide.
\qquad 7. In a particle diagram, I can distinguish between a physical change and a chemical change.	Substance A Circle the particle diagram that best represents Substance A after a physical change has occurred.
\qquad 8. I can use Table S and the density formula to solve word problems.	What is the volume of a sample of iron with a mass of 48.3 g ?
__ 9. Calculate Percent Error	A student determines the density of a sample of silver to be $10.81 \mathrm{~g} / \mathrm{cm}^{3}$. Determine the percent error of this measurement.

\qquad 10. I can determine how matter will be separated using filtration.	When a mixture of sand, salt, sugar, and water is filtered, what passes through the filter?
\qquad 11. I can describe how matter can be separated using distillation.	Which physical property makes it possible to separate the components of crude oil by means of distillation?
\qquad 12. I can state which separation process (decanting, filtering, distilling, chromatography, or evaporating) is best for a given situation.	To separate a mixture of salt and water, the best method of separation would be \qquad To separate a mixture of ethanol and water, the best method of separation would be \qquad To separate a mixture of food coloring dyes, the best method of separation would be \qquad To separate a mixture of oil and water, the best method of separation would be \qquad
\qquad 13. I can use particle diagrams to show the arrangement and spacing of atoms/molecules in different phases.	Draw a particle diagram to represent atoms of Li in each phase.
	Solid Liquid $^{\text {Gas }}$
\qquad 14. I can state the change of phase occurring in fusion, solidification, condensation, vaporization, melting, boiling, sublimation, deposition, and freezing.	During fusion a substance changes from \qquad to \qquad During solidification a substance changes from \qquad to \qquad During condensation a substance changes from \qquad to \qquad During vaporization a substance changes from \qquad to \qquad During melting a substance changes from \qquad to \qquad During boiling a substance changes from \qquad to \qquad During sublimation a substance changes from \qquad to \qquad During deposition a substance changes from \qquad to \qquad During freezing a substance changes from \qquad to . \qquad

\qquad 15.I can use the Law of Conservation of Mass to solve problems.	A student conducted an experiment in which he placed 100 grams of hydrochloric acid (HCl) into a container with 48.3 grams of Magnesium (Mg). When the reaction was complete, there was 32.5 grams of Magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$ in the container. How many grams of hydrogen gas were released from this reaction? Show all work for credit. $\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{MgCl}_{2}(\mathrm{aq})$
\qquad 16. I can indicate if a phase change is exothermic or endothermic.	For each phase change listed, indicate whether the change is exothermic or endothermic. fusion/melting \qquad solidification/freezing \qquad condensation \qquad vaporization/boiling_ \qquad sublimation \qquad deposition \qquad
\qquad 17. Given a heating/cooling curve, I can determine the temperature at which a substance freezes/melts or condenses/vaporizes.	 What is the freezing point of this substance? What is the boiling point of this substance?
\qquad 18. Given a heating/cooling curve, I can determine which sections of the curve show changes in potential energy.	 On the graph, circle the sections that show a change in potential energy.

_19. Given a heating/cooling curve, I can determine which sections of the curve show changes in kinetic energy.	O. How much heat is needed to vaporize 100.0 g of water at $100^{\circ} \mathrm{C}$?

