Name	Vell

O Unit 2 I Can Statements: Matter + Energy

1. I can draw particle diagrams to represent an atom, an element, a molecule, a compound, a mixture	Compound Put each of the following even	Diatomic Element 888 Mixture of two Compounds
2. I can classify substances as a pure substance (element or compound) or as a mixture.	Examples C ₁₂ H ₂₂ O _{1D} (NaCl) Fe, salt Element Fe C ₁₂ H ₂₂ O ₁ NaCl NaCl C ₁₂ H ₂₂ O ₁ C ₁₂ H ₂₂ O ₁	ound Mixture
3. I can define homogeneous mixture and heterogeneous mixture in terms of particle distribution.	homogeneous mixture: Same throughout but consistent composition (physical (ombo)) heterogeneous mixture: physically combined, integular composition	
4. I can give an example of homogeneous and heterogeneous mixtures.	Two examples of homogeneous mixtures: a. AiC b. Milk Two examples of heterogeneous mixtures: a. Salad b. Soil	
5. I can classify a property as physical or chemical.	Write "P" for physical or "C" for che Copper (II) sulfate is blue. Copper reacts with oxygen. Copper can be made into wire. Copper has a density of 8.96 g/	

6. I can classify a change as physical or chemical.	Write "P" for physical or "C" for chemical on the line provided.
projected of Chemical.	P copper (II) cultivated in the line provided.
	Copper (II) sulfate dissolves in water.
	Copper reacts with oxygen to form solid copper (I) oxide.
	ρ solid copper is melted.
	Pachul
	Pa chunk of copper is pounded flat.
	copper and zinc are mixed to form brass.
	Pa large piece of copper is chopped in half.
	C converse of copper is chopped in half.
7. In a particle 4:	copper reacts with bromine to form copper (II) bromide.
7. In a particle diagram, I can distinguish between a	00
physical change and a chemical	●○
change.	
	A 1
	Substance A
	Circle the particle diagram that best represents Substance A after a
	physical change has occurred.
	(1 / m) same tage
	∞ ∞ ∞ ∞ ∞
	0 0 0
	• 0 •∞•
8. I can use Table S and the	
density formula to solve word problems.	What is the volume of a sample of iron with a mass of 48.3 g?
	7.87 = Dofinan
	D= M 7.87=48.3 48.3=787V
	7 2 7 7 7 7
9. Calculate Percent Error	(6.14m= V)
	A student determines the density of a sample of silver to be 10.81g/cm ³ . Determine the
	The state of this measurement.
	MV-AV X100 TMV
	AV=10.4
	$\frac{\text{MV}-\text{AV}}{\text{AV}} \times 100 \text{TMV}$ $\frac{10.81-10.5}{10.5} \times 100 \text{2-95\%}$
	10.5 (2-95%)

10. I can determine how matter will be separated using filtration.	When a mixture of sand, salt, sugar, and water is filtered, what passes through the filter? Salt, Sugart Water	
11. I can describe how matter can be separated using distillation.	Which physical property makes it possible to separate the components of crude oil by means of distillation? Boiling pt	
12. I can state which separation process (decanting, filtering, distilling, chromatography, or evaporating) is best for a given situation.	To separate a mixture of salt and water, the best method of separation would be distillation To separate a mixture of ethanol and water, the best method of separation would be distillation To separate a mixture of food coloring dyes, the best method of separation would be chromotography To separate a mixture of oil and water, the best method of separation would be separation	
13. I can use particle diagrams to show the arrangement and spacing of atoms/molecules in different phases.	Draw a particle diagram to represent atoms of Li in each phase. Solid Liquid Gas	
14. I can state the change of phase occurring in fusion, solidification, condensation, vaporization, melting, boiling, sublimation, deposition, and freezing.	During fusion a substance changes from	

15.1 can use the Law of Conservation of Mass to solve problems.

A student conducted an experiment in which he placed 109 grams of hydrochloric acid (HCl) into a container with 48.3 grams of Magnesium (Mg). When the reaction was complete, there was 32.5 grams of Magnesium chloride (MgCl₂) in the container.

How many grams of hydrogen gas were released from this reaction? Show all work for credit.

$$Mg(s) + 2 HC(sq) \Rightarrow H_{2}(g) + MgC(J_{2}(sq))$$

 $48.3 + 100 \le x + 32.5$

____16, I can indicate if a phase change is exothermic or endothermic, For each phase change listed, indicate whether the change is exothermic or endothermic.

fusion/melting LNDD solidification/freezing LXD

condensation 1×0

vaporization/boiling endo

sublimation 2MdO

_____17. Given a heating/cooling curve, I can determine the temperature at which a substance freezes/melts or condenses/vaporizes.

What is the freezing point of this substance? 53° (

What is the boiling point of this substance? $/13^{\circ}$ C

_____18. Given a heating/cooling curve, I can determine which sections of the curve show changes in potential energy,

On the graph, circle the sections that show a change in potential energy.

	On the graph, circle the sections that show a change in kinetic energy.
	Which heat equation should be used in each of the following: a. How much heat is needed to vaporize 100.0 g of water at 100° C? b. How much heat is needed to raise the temperature of 100.0 g of water by 35° C? c. How much heat is needed to melt 100.0 g of ice at 0° C? $Q = MC\Delta T$
21. I can use the "heat" equations to solve for any variable, if I am given the other variables.	How many grams of water can be heated by 15° C using $13,500$ J of heat? $ \begin{array}{cccccccccccccccccccccccccccccccccc$