Skills:

1) Create testable questions
2) Make CER-based conclusions
3) Utilize and convert Sci. Not.
4) Use the Metric System

Unit 1: Vocabulary:

Complete throughout unit. Due on quiz day!

Metric System	
Scientific Notation	
Claim	
Evidence	
Reasoning	
Kelvin	
Mestable	
Independent	
Variable	
Dependent	
Variable	

Unit 1 Resounces:

Phenomena: A fact or situation that is \qquad to exist or happen, especially one whose cause or explanation is in \qquad .

Describe what you see occurring: \square

Ask Questions:

Make them testable!

What is a "Testable Question?": A testable question is one that can be answered by designing and conducting an experiment.

Testable questions are always about changing one thing to see what the effect is on another thing.

Make one of your questions testable!

Phenomena Stations:

At each station, describe the phenomena and ask at least one TESTABLE question!

Observe:	Observe:
Questions:	Questions:
Observe:	
Questions:	Observe:
Observe:	

Learning how to construct responses to explain phenomena is a process. Using the CER format can help organize thoughts and think critically about structuring understanding. There are key concepts that need to be defined in this process:

Claim: A statement about the \qquad of an investigation

Characteristics of a well written claim:

- A one-sentence answer to the guiding question you investigated
- It answers, \qquad ?
- It should not start with yes or no
- It should describe the relationship between dependent and independent variables different situations.

Evidence: Scientific \qquad that supports the claim

Evidence must be:

- Sufficient - use enough evidence to support the claim
- Appropriate - use data that supports your claim. Leave out information that does not support the claim
- \qquad (using the senses) or \qquad (numerical) or a combination of both

Reasoning: Ties together the \qquad and the \qquad

Characteristics of a well written reasoning:

- Shows how or why the data counts as evidence to support the claim
- Provides the justification for why this evidence is important to this claim
- Includes one or more \qquad that are important to the claim and evidence

Given the scenario from the video, determine whether the little girl's CER statements below are appropriate or not appropriate using the characteristics above.

Claim: My dad is a space alien
Evidence: He speaks a weird language
He drinks green stuff
He is from Albuquerque
He drives a spaceship
Reasoning: Just look at him, the evidence doesn't lie, my dad is an alien.

1) Describe how her claim follows the guidelines for a Claim.
2) Explain whether her claim describes the relationship between dependent and independent variable.
3) Describe how her evidence is considered qualitative and not quantitative.
4) Why is her data not classified as "sufficient and appropriate evidence" to support her claim?
5) Does she use a scientific principle to tie the evidence to the claim in the reasoning given?
6) Do you agree with the girl's CER process or would you refute the claim that her dad is an alien? Justify your answer.

Throughout the year we will encounter VERY small and big numbers. We use scientific notation to represent these numbers in powers of tens.
$10^{-15} 10^{-12} 10^{-9} 10^{-6} 10^{-3} 10^{0} 10^{3} 10^{6} 10^{9} 10^{12} 10^{15}$

- Remember:
- Keep all non zero numbers,
- Count your loops, loops place decimal
- Move right = negative exponent
- Move left = positive exponent
- $5,300,000 \mathrm{~m}$ can be written as \qquad
- 0.00000375 g can be written as \qquad
Examples: Write the following in scientific notation

1) $34500000 \mathrm{~kg}=$
2) $7561000 \mathrm{~m}=$ \qquad
3) $0.000301 \mathrm{~cm}=$ \qquad
4) $0.000000002091 \mathrm{mg}=$ \qquad

Examples: Convert the following from scientific notation to standard

1) $4.51 \times 10^{3} \mathrm{~g}=$ \qquad
2) $5.12 \times 10^{-6} \mathrm{~kg}=$ \qquad
3) $8.91 \times 10^{-4} \mathrm{~km}=$ \qquad

Convert the following numbers into scientific notation:

1) 3,400
2) 0.000023 \qquad
3) 101,000 \qquad
4) 0.010 \qquad
5) 45.01 \qquad
6) $1,000,000$ \qquad

Convert the following numbers into standard notation:
7) 2.30×10^{4}
8) $\quad 1.76 \times 10^{-3}$
9) $\quad 1.901 \times 10^{-7}$
10) 8.65×10^{-1}
11) 9.11×10^{3}
\square In chemistry (and all sciences) the International System of Units (SI) is used. It is a universal set of units that allows scientists from around the world to be consistent with each other.
\square What BASE UNIT describes the following measurements?
a. Mass
d. Time:
b. Volume
e. Temperature:
\qquad
c. Energy
f. Pressure:
\qquad
\square
\square TABLE \qquad is a list of \qquad
\square The SI system is a decimal system, meaning prefixes are used to change SI units by a power of 10

- TABLE \qquad is a list of
\square In front of every base unit comes a
\qquad that indicates the "order of magnitude" or how large the number is.

Converting Between Metric Units:

1) Identify starting and ending unit
2) Set up number line using scientific notation exponent!
3) Count loops in reference to the base unit!

Ex: 155 grams to milligrams:

Ex: 155 grams to kilograms:

If all else fails: King Henry Does Usually Desire Chocolate Milk

Practice:

1. If a substance weighs 2.00 grams and you need the mass in kilograms, will the number appear to become smaller or larger? Explain your answer.
2. Convert the following:
a. $900 \mathrm{~km}=$ \qquad m
h. $568 \mathrm{~mm}=$ \qquad m
b. $200 \mathrm{~kg}=$ \qquad g
i. $52 \mathrm{mg}=$ \qquad g
c. $5.00 \mathrm{~m}=$ \qquad km
j. $0.025 \mathrm{~J}=$ \qquad mJ
d. $7000 \mathrm{~J}=$ \qquad kJ
k. $0.859 \mathrm{~s}=$ \qquad ms
e. $800 \mathrm{~cm}=$ \qquad m
I. $0.0256 \mathrm{~m}=$ \qquad um
f. $20 \mathrm{cg}=$ \qquad g
m. ${ }^{* *} 0.000589 \mathrm{~g}=$ \qquad ng
g. $2.0 \mathrm{~L}=$ \qquad cL
n. ${ }^{* *} 0.00005987 \mathrm{~m}=$ \qquad pm

Skill 5B: Temperature Conversion:

Equation (see reference tables):

\square
Convert the following to Kelvin:
\qquad

1) $0^{\circ} \mathrm{C}$
2) $-50^{\circ} \mathrm{C}$ \qquad
3) $90^{\circ} \mathrm{C}$ \qquad
4) $-20^{\circ} \mathrm{C}$ \qquad 8) $350 \circ \mathrm{~K}$ \qquad
