Unit 11: Kinetics And Equilibrium

Skills

1. Understand theory of reaction kinetics
2. Understand factors affecting reaction rate
3. Using Table I
4. Drawing and interpreting PE diagrams
5. Distinguishing between endo/exo PE diagrams
6. Defining and identifying changes in entropy
7. Understanding and defining equilibrium
8. Understanding equilibrium through Le Chatelier's Principle
9. Applying Le Chatelier with types of stressors

Unit 11: Vocabulary:

Word	
Kinetics	
Rate Determining Step	
Effective Collision	
Exothermic	
Potential Energy	
Enthalpy	
Activation Energy	
Activated Complex	
Forward Reaction	
Ehemical Equilibrium	
Shatelier's Principle	
Stress	

Kinetics = study of the \qquad or \qquad at which reactions occur

- A REACTION is the BREAKING and REFORMING of \qquad to make entirely new compounds as products
\square Reaction Mechanism = STEP BY STEP PROCESS needed to make a product; how you get from "a" to "b" (like a recipe)

```
                                    REACTANTS }->\mathrm{ PRODUCTS
```

Just like when we bake a cake we must follow directions o CAN'T OMIT any STEPS!

- CAN'T CHANGE THE ORDER of the steps!
- CAN'T OMIT any REACTANTS (ingredients)

Determine whether each of the following chemical reactions is an example of a slow or fast reaction. Explain why knowing this relative rate of $r \times n$ is significant.

Rusting

Alka seltzer in water

Styrofoam decomposing

Weathering of rocks

Bleach removing color
\qquad

WHAT DETERMINES THE RATE OF A REACTION? Time to Race!!

1. NUMBER OF STEPS = more steps can mean a slower reaction
2. RATE DETERMINING STEP = the \qquad of the reaction; most important factor influencing reaction rate

Rate Determining Step

$$
\begin{array}{ll}
\mathrm{A}+\mathrm{B}+\mathrm{C} \rightarrow \mathrm{ABC} \quad \text { (2 steps) } \\
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB} & \text { (slow) } \\
\mathrm{AB}+\mathrm{C} \rightarrow \mathrm{ABC} & \text { (fast) }
\end{array}
$$

Collision Theory: In order for are action to occur, reactant PARTICLES MUST \qquad and have the following when doing so:

1. Proper amount of energy
2. Proper

ALIGNMENT/DIRECTION/ORIENTATION

Only when particles collide with these two conditions are met will there be an COLLISION, resulting in a reaction

Skill 2: Identify and understand 6 Factors Affecting Rate of Reaction:

Factor	How Rate Affected	Why does it increase the rate?
1. Nature of Reactants	\qquad substances react FASTER \qquad substances reac \dagger SLOWER	\square Ionic = smaller \rightarrow (Fewer bonds to break; Fewer Steps!) Covalent = larger (MORE bonds to break; MORE steps):
2. Concentration MOLECULES ON UPPER LAYER HAVE A LOWER CHANCE OF COMBINING	INCREASE concentration, \qquad rxn rate	The MORE PARTICLES in a given space, the LESS SPACE b/w particles \rightarrow MORE COLLISIONS
	Why does concentration affec	the rate of reaction?
3. Pressure	INCREASE pressure, INCREASE rxn rate (affects GASES ONLY!)	Increasing pressure \qquad VOLUME which DECREASES SPACE b/w particles \rightarrow MORE COLLISIONS
4. Temperature	INCREASE temperature, INCREASE rxn rate	Greater SPEED \rightarrow \qquad total COLLISIONS Greater AVERAGE KE \rightarrow collisions take place with MORE energy
5. Catalyst	SPEEDS UP THE RXN WITHOUT CHANGING THE NATURE OF THE REACTANTS/PRODUCT	Provides a SHORTCUT or \qquad \qquad for the mechanism Lowers the ACTIVATION ENERGY for the reaction
	Define Catalysis:	
6. Surface Area	INCREASE the surface area (by making PIECES SMALLER) INCREASES the rxn rate (How many surfaces are there?)	Increasing surface area EXPOSES MORE REACTANT PARTICLES to possible collisions

Answer the following based on this lab and your knowledge of reaction rates:

1. Which event must always occur for a chemical reaction to take place?
(1) Formation of a precipitate
(2) Effective collisions between reaction particles
(3) Formation of a gas
(3) addition of a catalyst to the reaction system
2. Increasing the temperature increases the rate of a reaction by
(1) lowering the activation energy
(2) increasing the activation energy
(3) lowering the frequency of a effective collisions between reacting molecules
(4) Increasing the frequency of effective collisions between reacting molecules
3. A 5.0 gram sample of zinc and a 50. Millimeter sample of hydrochloric acid are using in a chemical reaction. Which combination of these samples has the FASTEST reaction rate?
(1) Zinc strip and 1.0 M HCl
(2) Zinc powder and 1.0 M HCl
(3) Zinc strip and 3.0 M HCl
(3) Zinc powder and 3.0 M HCl
4. What is required for a chemical reaction to occur?
A) standard temperature and pressure
B) a catalyst added to the reaction system
C) effective collisions between reactant particles
D) an equal number of moles of reactants and products
5. Given the balanced equation representing a reaction:
$2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{SO}_{3}(\mathrm{aq}) \rightarrow \mathrm{S}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{3}+2 \mathrm{NaCl}(\mathrm{aq})$
(1) Activation energy decreases
(2) Frequency of effective collision decreases
(3) Activation energy increases
(4) Frequency of effective collision increases
6. A student conducts an experiment to determine how the temperature of water affects the rate at which an antacid tablet dissolves in the water. The student has three antacid tablets of the same size and compositions.

Dissolving Data for Theses Antaeld Tablots

Buker	Original Temparature at Water ('C)	Time for Tatlet to Disestive (s)
1	20.	40.
2	36.	25
3	45.	10.

(A) Describe the effect of water temp on the rate of dissolving
(B) Explain in terms of collision theory, how water temperature influence the rate of dissolving

Table I (of the Reference Tables) tells us if particular reactions are exothermic or endothermic based on sign of the $\Delta \mathrm{H}$ value!
$\Delta \mathbf{H}$: Enthalpy of a Reaction, how much \qquad is gained or \qquad during a reaction. Equal to the PE OF THE PRODUCTS - PE OF THE REACTANTS.

RECALL; Two types of chemical reactions:

1. Exothermic: Reactions that \qquad energy.

- $\Delta \mathrm{H}=$ negative value (-) energy released (on right)
- $A+B \rightarrow C+D+$ energy

Example: Sodium in water - lots of heat (and fire!) produced as product; heat felt on a test tube during a reaction
2. Endothermic: Reactions that \qquad energy.

- $\Delta \mathrm{H}=$ positive value (+) energy absorbed (on left)
- $\mathrm{A}+\mathrm{B}+\mathrm{ENERGY} \rightarrow \mathrm{C}+\mathrm{D}$

Example: baking (need oven to supply heat)

Determine if the following reactions are endo or exothermic:

1. $\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ \qquad
2. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ \qquad

The * at the bottom of TABLE I tells you all you need to remember...
3. $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$ \qquad

Practice:

Reaction	$\Delta \mathbf{H}$ $(k J)$	Endothermic or Exothermic
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$		
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$		
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$		
${ }^{*} \mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$		
${ }^{*} 4 \mathrm{NO}(\mathrm{g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$		

1. If you reverse a reaction, what happens to the magnitude of ΔH ? What happens to the sign?
2. If you double the concentration of the reactants and the products, what happens to the magnitude of $\Delta \mathrm{H}$? What happens to the sign?

Potential Energy Diagrams: Recall, we have talked about chemical bonds having stored energy (AKA potential energy). For that reason, chemists use diagrams called Potential Energy Diagrams to illustrate the potential (or stored) energy changes that occur during specific chemical reactions

Vocabulary of a Potential Energy Diagram:

Potential Energy of the Reactants:

- The amount of energy that a system \qquad with (the starting point in the graph.

Potential Energy of the Products:

- The amount of energy that the system \qquad with.
\square ACTIVATED COMPLEX: (The PEAK)
- \qquad energy point of the reaction; this is where full of the reactants occurs. Remember, this must happen for the reaction to be successful.

ㅁ Activation Energy:

- Amount of ENERGY NEEDED TO GET A \qquad or to FORM THE ACTIVATED COMPLEX of a reaction (you must get "over the hump" in order for a reaction to occur)
\square Activation energy of the Forward reaction:
- Energy needed to get "over the hump" going forward (left to right).Activation Energy of the Reverse reaction:
- Energy needed to get "over the hump" going backward (right to left).

ㅁ Heat of the Reaction

- ($\left.\Delta \mathrm{H}=\mathrm{H}_{\mathrm{p}}-\mathrm{H}_{\mathrm{r}}\right)$

Skill 5: Distinguish between Endo and Exothermic potential energy diagrams
ENDOTHERMIC Potential Energy Diagrams \rightarrow POSITIVE ΔH

- Product side (to the R) always HIGHER than the reactant side (to the L) meaning that ENERGY is \qquad _.

Reaction Coordinate

EXOTHERMIC Potential Energy Diagrams \rightarrow NEGATIVE ΔH

- Product side (to the R) always LOWER than the reactant side (to the L) meaning that ENERGY is \qquad _.
- Most common types of rxns because less energy has to be put in to get the rxn started (LOWER activation energy)

$$
\begin{aligned}
& \text { Label the following: } \\
& \text { A = Potential Energy of the Reactants } \\
& B=\text { Potential Energy of the Products } \\
& C=\text { Potential Energy of the Activated } \\
& \text { Complex } \\
& D=\text { Activation energy of the Forward rxn } \\
& E=\text { Activation Energy of the Reverse rxn } \\
& \text { F=Heat of the Reaction }\left(\Delta H=H_{p}-H_{r}\right)
\end{aligned}
$$

HOW EXACTLY DOES A CATALYST SHORTEN THE REACTION TIME NEEDED FOR A REACTION TO COMPLETE and how do we show it?

The \qquad is lowered ..
OR
The ACTIVATION ENERGY is decreased ...

> OR

The REACTION \qquad is shortened.

Draw the catalyzed reaction pathway on the diagram to the right \rightarrow

Determine the values of the following from the graph above:
\qquad
PE
Reactants:
Energy:
$A+B \quad \rightarrow$
$C+D$

PE
Products: \qquad
Activated complex: \qquad
Enthalpy of Rxn: \qquad
Activation Energy forward: \qquad
Activation Energy Reverse: \qquad
Endo or Exo?: \qquad

Part 2

Using "Increase" or "Decrease" or "Remains the Same" to describe how adding a catalyst would affect the following:

PE Reactants: \qquad
PE Products: \qquad
Activated complex: \qquad
Enthalpy of Rxn: \qquad
Activation Energy forward: \qquad
Activation Energy Reverse: \qquad
\square Entropy ($\Delta \mathbf{S}$): Degree of \qquad , CHAOS, DISORDER or "MESSINESS" in a system; nature tends to proceed to a state of GREATER entropy, or disorder.

- The MORE ORDER you have, the \qquad ENTROPY in your system.
- The LESS ORDER you have, the \qquad ENTROPY in your system.
\qquad is the most significant factor in determining $\Delta \mathrm{S}$:

$$
\text { Changing from }(\mathbf{s}) \rightarrow(\mathrm{l}) \rightarrow(\mathrm{aq}) \rightarrow(\mathrm{g})=\text { INCREASED ENTROPY }
$$

Draw particle diagrams to illustrate each of the following phases:

(s)

(g)
*Entropy \qquad when a compound is broken down.
*Entropy \qquad when a compound is created and bonds are formed.

NOTE: If there is no phase change, count up the \# molecules on each side

$$
\text { RULE: \# moles } \downarrow=\text { ENTROPY } \downarrow=-\Delta \mathrm{S}, \quad \text { AND } \quad \text { If } \# \text { moles } \boldsymbol{\uparrow}=\mathrm{ENTROPY} \boldsymbol{\uparrow}=+\Delta \mathrm{S})
$$

For the following determine if there is an increase, decrease, or no change in entropy

1. $2 \mathrm{KClO} 3(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$ \qquad
2. $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}$ \qquad
3. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ \qquad
4. $\mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$ \qquad
5. $\mathrm{KCl}_{(\mathrm{s})} \rightarrow \mathrm{KCl}_{(\mathrm{I})}$ \qquad
6. $\mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$ \qquad
\square Equilibrium occurs WHEN THE \qquad OF THE FORWARD REACTION EQUALS THE OF THE REVERSE REACTION in a closed system.
\square When equilibrium is reached, IT DOES NOT MEAN that the reactants and products are of equal QUANTITIES. So...

- DOUBLE ARROWS () instead of a single arrow. This allows us to illustrate that the reactions are proceeding in both directions (forward and reverse).
- Equilibrium is \qquad which means that it is constantly CHANGING or FLUCTUATING
- Equilibrium means that reactant and product are CONSTANT. *Equilibrium does NOT mean that reactant and product concentrations are equal.*

TIME FOR BAILING BEAKERS......WHO WILL BE VICTORIOUS?

TYPES OF EQUILIBRIUM (all occur in

\qquad) *IT'S ALL ABOUT THE EQUAL RATES*

1. Physical Equilibrium: Equilibrium that involves physical changes

- Phase Equilibrium - occurs during a PHASE CHANGE

RATE of MELTING = RATE of FREEZING (sealed container @ $0^{\circ} \mathrm{C}$)
RATE of EVAPORATION = RATE of CONDENSATION (sealed container @ $100^{\circ} \mathrm{C}$)

- Solution Equilibrium - occurs at a solution's \qquad POINT RATE of DISSOLVING $=$ RATE of CRYSTALLIZATION example: $\mathrm{NaCl}_{(\mathrm{s})} \leftarrow \rightarrow \mathrm{NaCl}_{(\mathrm{aq})}$

2. Chemical Equilibrium:

- \qquad of the FORWARD RXN = \qquad of the REVERSE RXN
OR
- \qquad of BREAKING BONDS = \qquad of FORMING BONDS

1. Which statement describes a chemical reaction at equilibrium?
A) The products are completely consumed in the reaction.
B) The reactants are completely consumed in the reaction.
C) The reaction rates of the products and reactants are equal.
D) The reaction rates of the products and reactants are constant.
2. Which two processes are at equilibrium in a saturated sugar solution?
a. evaporation and condensation
c. decomposition and synthesis
b. dissolving and crystallization
d. ionization and recombination

Le Chatelier's principle explains HOW A SYSTEM AT EQUILIBRIUM WILL RESPOND TO \qquad .

- STRESS = Any change in TEMPERATURE, CONCENTRATION, or PRESSURE put upon an system at equilibrium
- When a STRESS is added to a system at equilibrium, the system will \qquad in order to relieve that stress and reach a new equilibrium.
- SHIFT = an increase in the \qquad of EITHER the forward OR the reverse rxn
- SHIFT TO RIGHT (TOWARD PRODUCTS):
- Rate of FORWARD reaction INCREASES (\rightarrow)
- Reactants \rightarrow_{\leftarrow} Products *Favors PRODUCTS
- SHIFT TO LEFT (TOWARD REACTANTS):
- Rate of REVERSE reaction INCREASES ($\leftarrow)$
- Reactants \leftarrow_{\rightarrow} Products *Favors REACTANTS

Skill 7a: Applying Le Chatelier with Types of Stressors

Initial Stress: Concentration
\square When the concentration of a reactant or product is INCREASED, the

ADD, AWAY reaction will SHIFT \qquad from the increase (use up the excess.

Example 1: $\quad 4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \leftarrow \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ HEAT

1. If we add $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, the system would shift to the \qquad and the $\left[\mathrm{NH}_{3}\right]$ would \qquad .
2. If we add $\mathrm{O}_{2}(\mathrm{~g})$, the system would shift to the \qquad and the [NO] would \qquad -.
3. If we add $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, the system would shift to the \qquad and the [NO] would \qquad .
\square When the concentration of a reactant or product is DECREASED: The reaction will SHIFT \qquad the side that has experienced the

Take, Towards

 decrease in concentration (replaces what was taken)Example 2: $\quad 4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \leftarrow \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{HEAT}$

1. If we remove oxygen, the system will shift to the \qquad and the $\left[\mathrm{NH}_{3}\right]$ will \qquad .
2. If we remove water, the system will shift to the \qquad and the [NO] will \qquad .
3. If we remove ammonia, which concentration(s) will decrease? \qquad
4. If we remove $\mathrm{NO}(\mathrm{g})$, which concentration(s) would increase? \qquad

Initial Stress: Temperature (involves increasing or decreasing the "HEAT" component of a reaction)
\square When temperature (or HEAT) is decreased: The reaction will SHIFT \qquad the rxn side containing "HEAT" (in the EXOTHERMIC direction)

Take, Towards

$$
\mathrm{A}+\mathrm{B} \leftarrow \mathrm{C}+\mathrm{D}+\text { HEAT }
$$

Example 1: $\quad 4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ HEAT

1. If we remove heat, which concentration(s) will decrease? \qquad
2. If we remove heat, which concentration(s) will increase? \qquad
\square When temperature (or HEAT) is increased: When temperature (or HEAT) is increased: The reaction will SHIFT \qquad from the rxn side containing "HEAT" (in the ENDOTHERMIC direction)
$A+B+$ energy $\leftarrow \rightarrow C+D$

$$
\text { Example 2: } \quad 4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{HEAT}
$$

3. If we added heat, which concentration(s) will decrease? \qquad
4. If we added heat, which concentration(s) will increase? \qquad

Initial Stress: Pressure.....EFFECTS GASES ONLY!!!!
\square INCREASE PRESSURE: rxn shifts to side with \qquad \# GAS MOLECULES (or least \# moles of gas)
\square DECREASE PRESSURE: rxn shifts to side with GREATEST \# GAS MOLECULES (or greatest \# moles of gas)

NOTE: If the rxn contains NO GAS MOLECULES or if the rxn has the SAME \# GAS MOLECULES on each side, there is NO EFFECT and NO SHIFT results from an increase or decrease in pressure

Example 1: $\quad \mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrow \rightarrow \mathrm{CO}_{2}(\mathrm{aq})$

4. If we increase the pressure, the concentrations of which species will increase? \qquad

Example 2:
 $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longleftrightarrow \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

1. If we increase the pressure, in which direction will the equilibrium shift? (Count Moles) \qquad
2. If we increase the pressure, the concentration of which species will increase initially? \qquad
3. If we decrease the pressure, the concentration of which species will decrease initially? \qquad
4. If we decrease the pressure, the concentration of which species will increase initially? \qquad

Chemical System: $\quad 2 \mathrm{SO}_{3}+$ heat $\longleftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

a) Stress: Increasing Temperature:
a. Reaction will shift \qquad Concentration of SO_{3} \qquad
b. Rate of forward reaction \qquad Concentration of SO_{2} \qquad
c. Rate of reverse reaction \qquad Concentration of O_{2} \qquad
b) Stress: Increasing Pressure:
a. Reaction will shift \qquad Concentration of SO_{3} \qquad
b. Rate of forward reaction \qquad
c. Rate of reverse reaction \qquad
Concentration of SO_{2} \qquad Concentration of O_{2} \qquad
b) Stress: Decreasing Pressure:
a. Reaction will shift \qquad Concentration of SO_{3} \qquad
b. Rate of forward reaction \qquad
c. Rate of reverse reaction \qquad
Concentration of SO_{2} \qquad
Concentration of O_{2} \qquad
Chemical System: $\quad 3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2} \leftarrow \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+$ heat
a) Stress: Increasing Temperature:
a. Reaction will shift \qquad
b. Rate of forward reaction \qquad
Concentration of H_{2} \qquad
c. Rate of reverse reaction \qquad
Concentration of N_{2} \qquad
Concentration of NH_{3} \qquad
b) Stress: Decreasing temperature
a. Reaction will shift \qquad Concentration of H_{2} \qquad
b. Rate of forward reaction \qquad Concentration of N_{2} \qquad
c. Rate of reverse reaction \qquad Concentration of NH_{3} \qquad
c) Stress: Adding NH_{3} :
a. Reaction will shift \qquad Concentration of H_{2} \qquad
b. Rate of forward reaction \qquad Concentration of H_{2} \qquad
c. Rate of reverse reaction \qquad Concentration of NH_{3} \qquad
Chemical System:
$\mathrm{BaSO}_{4}(\mathrm{~s}) \longleftrightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
a) Stress: Adding $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$
a. Reaction will shift \qquad
b. Rate of forward reaction \qquad
Concentration of Ba^{2+}
Concentration of $\mathrm{SO}_{4}{ }^{2-}$ \qquad
c. Rate of reverse reaction \qquad
b) Stress: Removing $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ (s)
a. Reaction will shift \qquad
b. Rate of forward reaction \qquad
c. Rate of reverse reaction \qquad
c) Stress: Removing $\mathrm{SO}_{4}{ }^{2-}$
a. Reaction will shift \qquad Concentration of Ba^{2+} \qquad
b. Rate of forward reaction \qquad
c. Rate of reverse reaction \qquad

Concentration of $\mathrm{SO}_{4}{ }^{2-}$ \qquad

Match the change to the equilibrium system below with the letter of the appropriate response. Each letter can be used once, more than once, or not at all.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

\qquad

1) O_{2} is added to the reaction
a) The equilibrium shifts to the right
2) SO_{3} is removed from the reaction
b) The equilibrium shifts to the left
3) SO_{3} is added to the reaction
c) there is no change in the equilibrium
\qquad
\qquad 4) The pressure is increased
4) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})+53 \mathrm{~kJ} \longleftrightarrow \rightarrow \quad 2 \mathrm{HI}(\mathrm{g})$

Using directional arrows, describe what would happens if:
a. Increase Temperature: Shifts to the \qquad , \qquad [HI], \qquad $\left[\mathrm{H}_{2}\right]$, \qquad [${ }_{2}$]
b. Increase $\left[\mathrm{H}_{2}(\mathrm{~g})\right]$: Shifts to the \qquad
\qquad [HI], \qquad [12]
c. Increase $[\mathrm{HI}(\mathrm{g})]$: Shifts to the \qquad , \qquad [H_{2}], \qquad $[12]$
d. Decrease Pressure:
6) $\mathrm{PCl}_{5}(\mathrm{~g})+$ heat $\leftrightarrow \rightarrow \quad \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

What happens if:
a. Adding Cl_{2} : Shifts to the \qquad , \qquad [PCl_{5}], \qquad $\left[\mathrm{PCl}_{3}\right]$
b. Increasing Pressure: Shifts to the \qquad
\qquad [PCl_{5}], \qquad [PCl_{3}], \qquad $\left[\mathrm{Cl}_{2}\right]$
c. Lowering Temperature: Shifts to the \qquad , \qquad [PCl_{5}], \qquad [PCl_{3}], \qquad $\left[\mathrm{Cl}_{2}\right]$
d. Removing PCl_{3} : Shifts to the \qquad [PCl_{5}], \qquad $\left[\mathrm{PCl}_{3}\right]$
7) For the following reaction, what will occur if pressure is increased? Why?

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \leftarrow \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

8) Given the reaction at equilibrium : $\mathrm{A}(\mathrm{g})+\mathrm{B}_{(\mathrm{g})} \leftrightarrow \mathrm{C}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})}$ The addition of a catalyst will:
a) shift equilibrium to the right
b) shift equilibrium to the left
c) increase the rate of the forward and reverse reactions
d) have no effect on the rate of the forward and reverse reactions
9) Consider the equation of the following reaction at equilibrium:

$$
X+Y \leftarrow \rightarrow 2 Z+\text { heat }
$$

The concentration of the product can be increased by
a) adding a catalys \dagger
b) adding more heat to the system
c) increasing the concentration of Y
d) decreasing the concentration of Z
10) Consider the following equation: $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \leftarrow \rightarrow 2 \mathrm{HCl}_{(\mathrm{g})}$

Which change will result in an increase in the concentration of chloride gas?
a) decreasing the pressure on the system
b) decreasing the concentration of HCl
c) increasing the concentration of H_{2}
d) increasing the concentration of HCl
11) Consider the following equation:
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftarrow \mathrm{gNO}_{(\mathrm{g})}$
As the concentration of $\mathrm{N}_{2(\mathrm{~g})}$ increases, the concentration of $\mathrm{O}_{2(\mathrm{~g})}$ will
a) decrease
b) increase
c) remain the same
d) vary directly
12) Referencing the equation in question 11 , why does increasing the pressure increase the rate of the forward reaction?

Fill in the blanks using the word bank. Only one word in the bank is used TWICE.

activated complex	Le Chatelier's Principle	entropy
heterogeneous reaction	double arrow	reaction mechanism
activation energy	potential energy	exothermic reaction
homogeneous reaction	endothermic reaction	shift
catalyst	rate	heat of reaction
kinetics	enthalpy	stress
chemical equilibrium	rate-determining step	

The branch of chemistry concerned with the rates of chemical changes is called
\qquad . A chemical change in which all the reactants are in the same phase is called $a(n)$ \qquad . One in which the reactants are in different phases is called $a(n)$ \qquad . A substance that speeds up a chemical change without being permanently altered or affecting the nature of the reaction is called $a(n)$ \qquad .

The series of steps by which reacting particles rearrange themselves to form products is called the \qquad The slowest step in such a series is the
\qquad . A short-lived, high-energy arrangement of particles that is formed when reacting particles collide at the proper angle with the proper amount of energy is $a(n)$ \qquad . The minimum amount of energy needed to form this arrangement is called the \qquad . Because this energy is stored inside the particles, it is an example of \qquad . The reactants and the products of any reaction have different amounts of this kind of stored energy. The difference between these two amounts of energy is the \qquad .

The heat content of a substance is called its \qquad . The change in this quantity that occurs during a chemical reaction is called the \qquad ΔH. The sign of the quantity ΔH is positive in the case of $a(n)$ \qquad . It is negative in the case of $a(n)$ \qquad .

When forward and backward reactions occur at the same \qquad , a state of
\qquad exists. A(n) \qquad is used in an equation to
symbolize this state.
When conditions such as temperature are changed, a chemical reaction is said to be placed under $\mathrm{a}(\mathrm{n})$ \qquad . Under such changing conditions, equilibrium can undergo $a(n)$ ___ in direction that tends to counteract the imposed changes. This generalization is known as \qquad . The measure of the randomness of a system is its \qquad .

1) If you were given the $\Delta \mathrm{H}$ value of a reaction, you could determine whether the reaction was exothermic or endothermic. Explain how you could do so.
\qquad
\qquad
2) In an exothermic reaction, Hproducts will always be (larger/smaller) than Hreactants

Enthalpy and Table I

Look in your Reference Tables (Table I) and state whether the following reactions are exothermic or endothermic.
3. Sodium hydroxide dissociating into a positive sodium ion and a negative hydroxide ion

Exo or Endo

1. Methane $\left(\mathrm{CH}_{4}\right)$ combining with oxygen to produce carbon dioxide and water
2. Potassium nitrate dissociating into a positive potassium ion and a negative nitrate ion
3. Carbon monoxide combining with oxygen to form carbon dioxide
4. **A positive lithium ion combining with a negative bromine ion to form lithium bromide

Process	ΔH	Exo or Endo	Entropy change
1. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$			
2. $\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$			
3. $\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2}(\mathrm{~g})$			
4. ${ }^{\text {C }}$ (s) $+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$			
5. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$			
6. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$			
7. $\mathrm{Br}-(\mathrm{aq})+\mathrm{Li+}(\mathrm{aq}) \rightarrow \mathrm{LiBr}$ (s)			
8. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$			
9. $\mathrm{NaOH}_{(\mathrm{s})} \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}_{-}(\mathrm{aq})$			
10. $2 \mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{CO}(\mathrm{g})$			

