SKILLS

- 1. Identifying PARTS OF A SOLUTION
- 2. Factors that affect solubility
- 3. Expressing Concentration and using table G

- 4. Calculating Molarity
- 5. Using PPM
- 6. COLLIGATIVE PROPERTIES

Vocab

7. PROPERTIES OF ACIDS AND BASES 8. Understand pH scale 9. Measuring pH using table M **10. Neutralization Reactions**

- 11: Titrations

Due Test Day

Word	Definition
Homogeneous Mixture	
Solution	
Miscible	
Solute	
Solvent	
Saturation	
Molarity	
Acid	
Base	
pH Scale	
Hydronium ion	
Types of Indicators	
Titration	
Neutralization	

Skill 1: Identify parts of a solution

Heterogeneous Mixture – substances in which particles are Homogenous Mixture – substances in which particles are _____ □ Solute: substances that is being _____ □ Solvent: substances that **SKILL 2: FACTORS THAT EFFECT SOLUBILITY: Review!** Ionic compounds can or cannot be soluble (dissolve in water). If it is soluble the phase is _____, if it is insoluble the phase is _____ Use Table to identify the phase! 1) PbCO₃ 2) KNO₃ FACTORS AFFECTING Rate of SOLUBILITY (How much it dissolves) Solubility: _____ Nature of Solute and Solvent: Solution Type Nonpolar Solvent Polar Solvent Nonpolar Polar lonic 1. Temperature: - Solids: ______ temperature, _____ solubility (more solid will dissolve) - Gases: ______ temperature, ______ solubility 2. Pressure: -Only effects gases in liquids -Gases: _____ pressure, _____ solubility FACTORS AFFECTING RATE OF DISSOLUTION (How quickly it dissolves) 1. Size of particles: (______ surface area, _____ rate of solution) 2. Amount already dissolved: (______ dissolved, _____ rate)

3. Temperature:

a. Solids and Liquids: ______ temperature, _____ rate

b. Gases: ______ temperature, ______ rate

PRACTICE:

Solute Name	Solute	Temperature		Pressure		Best Solvent		
	Formula	Low	High	Low	High	No Effect	H ₂ O	CCl₄
	KNO₃(s)							

1. Saturated Solution

- Solution that contains the ______ at a given temperature
- Saturated solutions are in <u>(rate of dissolving = rate of recrystallization)</u>

Saturated solution containing 100 mL $\rm H_2O$ and 36.0 g NaCl

The additional 4.0 g NaCI remains undissolved

Indicating Behavior:

- 2. Unsaturated Solution
 - Solution is holding _____

Indicating Behavior: _____

3. Supersaturated Solution

- Solution is holding _____
- □ Unstable...

Indicating Behavior: _____

Using SOLUBILITY CURVES (FOUND ON TABLE _____)

Table G Shows: mass of solute that will dissolve in 100 g (or 100 mL) of water at different temperatures

How to Use Table G to determine saturation at 100g of H_2O :

- 1) Identify solute line on Table G
- 2) Find interception point between GRAMS given and Temperature Below Curve = _____
 - On Curve = _____
 - Above Curve = _____

Identify the following as being saturated, unsaturated, or supersaturated:

a. 20 °C and 20 g of KNO_3	
b. 40 °C and 20 g of KClO ₃	
c. 90 °C and 10 g of NH_3	
d. 80 g NaNO3 in 100 g H2O at 10°C	
e. 75 g NaNO3 in 100 g H2O at 10°C	

Unsaturated solution containing 100 mL H₂O and 30.0 g NaCl

How to Use Table G to determine saturation at 200g of H₂O:

- 3) Identify solute line on Table G
- 4) Determine the number of grams to saturate at 100g
- 5) Double the number of grams needed for saturation (b/c H_2O is doubled) Below Curve = _____

On Curve = _____

Above Curve = ____

Extension: Get to saturation... find difference between given and needed amount!

Grams Solute per 200 g H2O	Saturation?	Grams Solute per 200 g H ₂ O	Solute Added to make Saturated	Grams Solute per 100 g H ₂ O	Solute Added to make Saturated
e. 70 g NaCl at 90°C		i. 25 g NH₃ at 5°C		a. 35 g KNO₃ at 40℃	
f. 10 g NH₃ at 90°C		j. 30 g NaNO₃ at 50°C		b. 50 g NH₃ at 10℃	

How much will crystallize out of solution?

- 1) Identify solute line on Table G
- 2) Determine the number of grams to saturate at 100g at initial temperature
- 3) Determine the number of grams to saturate at 100g at final temperature
- 4) Find the difference between these values. This is how much will solidify given the temperature decrease.

Tell how many grams of each solute will <u>crystallize/precipitate/settle</u>. Assume all solutions are saturated and in 100 grams of H₂O.

Amount cooled	Amount Precipitated	Amount cooled	Amount Precipitated
a. KNO3 (aq) is cooled from 70°C to 40°C		e. NaCl (aq) is cooled from 100°C to 40°C	
b. NH₄CI (aq) is cooled from 90°C to 20°C		f. KNO₃ (aq) is cooled from 65°C to 25°C	

	Concentration:
	· · ·
	Molarity:
	Equation (See Ref. Tabs.)
Examp	bles : 1) What is molarity of a solution that contains 4.0 mol of NaOH in 0.50 L of solution?
	2) Calculate the molarity of 2.0 moles of HCI dissolved in 500. mL solution.
3) Calcula	te the molarity of each of the following solutions:
(a) 2.5	mol of NaOH in 0.500 L of solution (b) $1.8L$ of solution containing 3.3 mol KNO ₃

4) Calculate the total moles of solute in each of the following solutions:

(a) 1.7 L of 0.35M NaOH

(b) 50 mL of 3.3-molar KNO_3

(c) 5.0 L of 1.25 M NaOH

(d) 116 mL of 1.5 M K_2SO_4

- a) There is a 0.250 L solution with 53 g of Na₂CO₃ completely dissolved. What is the molarity of the solution?
- b) What is the Molarity of 30. g of NaOH in 0.500 L of solution

How to Make a Solution:

What mass of sodium carbonate is required to prepare 2.00 L of 0.250 M Na $_2$ CO $_3$ solution?

Step 1: Find out how many moles are needed

Step 2: Convert moles to grams

Calculate the total grams of solute in each of the following solutions:

(a) 1.0 L of 0.5 M CaCl $_2$

(b) 500 mL of 3.3-molar KNO_3

Parts Per Million (ppm):					
Equation (See Ref. Tabs.)					
Example 1: Approximately 0.0043 (Express this in terms of parts per mi	g of oxygen can be dissolved i llion.	n 100. mL of water at 20°C.			
Example 2: 2.5 grams of a groundwater solution are found to contain 5.4×10^{-6} grams of the Cu ⁺² ion. What is the concentration of the copper ion in ppm?					

1. Calculate the concentration of chlorine in a swimming pool if there is 0.02 g of chlorine in 10,000 g of pool water.

2. Exposure to lead has been linked to delays in physical and mental development and attention deficit disorders in children as well as kidney problems in adults. One source of this toxic heavy metal is drinking water in older homes whose plumbing contains lead. Water with a lead concentration of below 0.015ppm is considered safe to drink. A 100 g water sample taken from a home contains 1.2 x 10⁻⁶ grams of lead. Is this water considered safe to drink?

3. The health of fish depends on the amount of oxygen dissolved in the water. A dissolved oxygen (DO) concentration between 6 parts per million and 8 parts per million is best for fish health. A DO concentration greater than 1 part per million is necessary for fish survival. Fish health is also affected by water temperature and concentrations of dissolved ammonia, hydrogen sulfide, chloride compounds, and nitrate compounds.

A student's fish tank contains fish, green plants, and 3800 grams of fish-tank water with 2.7 x 10⁻² gram of dissolved oxygen.

- a.) State how an increase in the temperature of the fish-tank water affects the solubility of oxygen in the water.
- b.) Determine if the DO concentration in the fish tank is healthy for fish in terms of ppm.
- c.) Explain, in terms of molecular polarity, why oxygen gas has low solubility in water. Your response must include *both* oxygen and water.
- d.) Under what kind of conditions of temperature and pressure would oxygen gas be most soluble in water?
- e.) An aqueous solution has a concentration of 7 ppm of oxygen dissolved in 1000. grams of water. Calculate the amount of oxygen in the solution in grams. Your response must include *both* a correct numerical setup and the calculated result.
- 4. A safe level of fluoride ions is added to many public drinking water supplies. Fluoride ions have been found to help prevent tooth decay. Another common source of fluoride ions is toothpaste. One of the fluoride compounds used in toothpaste is tin(II) fluoride.

A town located downstream from a chemical plant was concerned about fluoride ions from the plant leaking into its drinking water. According to the Environmental Protection Agency, the fluoride ion concentration in drinking water cannot exceed 4 ppm. The town hired a chemist to analyze its water. The chemist determined that a 175-gram sample of the town's water contains 0.000 250 gram of fluoride ions.

- a. What is the chemical formula for tin(II) fluoride?
- b. How many parts per million of fluoride ions are present in the analyzed sample?

Electrolyte = A substance that produces ______ when dissolved in a solution. Because the ions are FREE TO MOVE AROUND () in the solution, the solution is able to electricity (salts).

When a solute is dissolved in a solvent, solvent molecules surround the particles of the solute. This causes the boiling point and freezing point of the solution to change in a very specific and predictable way.				
Boiling Point Elevation = b.p when solute is added				
Ex: Adding salt to water allows you	to boil pasta at 102-103 ° C (cooks it faster)			
Freezing Point Depression = f.p when solute is added				
Ex: Putting salt on roads causes ice to melt because it drops freezing point below 0°C.				

IONIC VS MOLECULAR SOLUTES: Why do we salt the roads in the winter rather than sugar them!

	MOLECULAR/ Covalent: C ₁₂ H ₂₂ O ₁₁	IONIC: Salt (NaCl)		
Reaction in water				
# of Moles Produced				
General Rule: The solute that dissolves to form a greater number of products (ions) will have a greater f.p. depression (f.p. will decrease by more) and a greater boiling point elevation (b.p. will increase by more)				

CaCl₂ i\$ even better than NaCl, \$0 why don't we u\$e it to \$alt our road\$? Becau\$e ___

1) Which of the following solutions will boil at the highest temperature?

a)	100 g	NaCl in	1000 g of wate	er
C)	100 g	NaCl in	250 g of wate	r

b) 100 g NaCl in 500 g water d) 100 g NaCl in 125 g of water

2) Which solution has the highest boiling point?

a) 1.0 M KNO3 c) 3.0 M C6H12O6 b) 2.0 M KNO3 d) 2.0 M Ca(NO3)2

3) Which of the following solutions will freeze at the lowest temperature?

a) 100 g NaCl in 150 g of water c) 100 g NaCl in 125 g of water

b) 100 g NaCl in 600 g water

- d) 100 g NaCl in 250 g of water
- Time for some lce Cream!!

PROPERTIES OF SOLUTIONS PRACTICE QUESTIONS

- 1. Which solution has the highest boiling point?
 - (1) 0.5 M NaCl
 - (2) 0.5 M CaCl₂
 - (3) 1.0 M (NH₄)₃PO₄
 - (4) 2.0 M CH₃OH
- 2. Compared to pure water, an aqueous solution of calcium chloride has a
 - (1) higher boiling point and higher freezing point
 - (2) higher boiling point and lower freezing point
 - (3) lower boiling point and higher freezing point
 - (4) lower boiling point and lower freezing point
- 3. Which solution has the highest boiling point?
 - (1) 1.0 M KNO₃ (3) 1.0 M Ca(NO₃)₂
 - (2) 2.0 M KNO₃ (4) 2.0 M Ca(NO₃)₂
- 4. Which solution has the lowest freezing point?
 - (1) 10. g of KI dissolved in 100. g of water
 - (2) 30. g of KI dissolved in 100. g of water
 - (3) 20. g of KI dissolved in 200. g of water
 - (4) 40. g of KI dissolved in 200. g of water
- 5. As water is added to a 0.10 M NaCl aqueous solution, the conductivity of the resulting solution (1) decreases because the concentration of ions decreases
 - (2) decreases, but the concentration of ions remains the same
 - (3) increases because the concentration of ions decreases
 - (4) increases, but the concentration of ions remains the same
- 6. Which aqueous solution of KI freezes at the lowest temperature?
 - (1) 1 mol of KI in 500. g of water
- (3) 1 mol of KI in 1000. g of water
- (2) 2 mol of KI in 500. g of water
- (4) 2 mol of KI in 1000. g of water
- 7. Compared to a 5.0 M aqueous solution of KCI at 1 atmosphere, a 2.0 M aqueous solution of KCI at 1 atmosphere has a
 - (1) lower boiling point and a higher freezing point
 - (2) lower boiling point and a lower freezing point
 - (3) higher boiling point and a higher freezing point
 - (4) higher boiling point and a lower freezing point
- 8. Based on Reference Table F, which of these saturated solutions has the lowest concentration of dissolved ions?
 - (1) NaCl(aq) (2) $MgCl_2(aq)$ (3) NiCl₂(aq) (4) AgCl(aq)
- 9. Compared to a 0.1 M aqueous solution of NaCl, a 0.8 M aqueous solution of NaCl has a
 - (1) higher boiling point and a higher freezing point
 - (2) higher boiling point and a lower freezing point
 - (3) lower boiling point and a higher freezing point
 - (4) lower boiling point and a lower freezing point

	Acids			Bases
Arrhenius Definition	Substances that produ	се	Substances tha	t produce
	Ex:		Ex:	
	$HCI + H_2O \rightarrow H_3O^+ + CI^-$		NaOH is a base	
*Alternate Definition				
Allemaie Deminion				
	Evi		NH.+ →	
	LA. H+/	ACCEPTOR H+ DOM	VII - 7 INII4 - T NOR	OII
	E Dat Structures			
	E DOI SITUCIORES:			
General Formula	C _x H _y <u>COOH</u>			
			*NH ₃ is	an exception
Examples				
Electrolytes?				
(conduct electricity				
in solution?)				
54				
pii	1 2 3 4 5	7 ۲	7 9 0 1	
		0 /		
				SIKONG
			BASE	BASE
H+ and Hydronium			Hydro	xide
	-		-	

	If an ACID is added	If a BASE is added
рН		
[H⁺] or [H₃O⁺]		
[OH-]		
Solution becomes		

The pH is correlated to the concentration of H⁺

рН	H ⁺ Concentration	Acidic or Basic
3		
7		
11		

Practice:

How much does the hydrogen/hydronium ion concentration change when the pH changes?

- □ increasing or decreasing the pH by 1 changes the [H⁺] by a factor of _____
- □ increasing or decreasing the pH by 2 changes the [H⁺] by a factor of _____
- □ increasing or decreasing the pH by 3 changes the [H⁺] by a factor of _____

Ex: Describe what happens to the concentration of hydrogen ions in a solution if the pH is changed from 7 to 5.

Ex: Describe what is happening to the concentration of hydrogen ions in a solution if the pH is changed from 5 to 8.

pH Change	[H₃O⁺] increase or decrease?	[OH ⁻] increase or decrease?	Does the solution become more acidic or basic?	By a factor of
6 to 8				
8 to 5				
3 to 7				
11 to 9				
14 to 13				
4 to 8				

- Which change in pH represents a hundredfold increase in the concentration of hydronium ions in a solution?
 pH 1 to pH 2 (3) pH 2 to pH 1
 pH 3 to pH 5 (4) pH 5 to pH 3
- 2. The pH of an aqueous solution changes from 4 to 3 when the hydrogen ion concentration in the solution is
 - (1) decreased by a factor of 100
 - (2) decreased by a factor of 10
 - (3) increased by a factor of 100
 - (4) increased by a factor of 10

 Solution A has a pH of 3 and solution Z has a pH of 6. How many times greater is the hydronium ion concentration in solution A than the hydronium ion concentration in solution Z?

(1) 100	(3) 3
(2) 2	(4) 1000

- 4. What is the pH of a solution that has a hydronium ion concentration 100 times greater than a solution with a pH of 4?
 - (1) 5 (3) 3
 - (2) 2 (4) 6

How to use Table M:

- □ If the pH is below the first number, the solution will be _____
- □ If the pH is above the second number, the solution will be _____
- □ If the pH is between the numbers, the solution will be a _____

Indicator	Approximate pH Range for Color Change	Color Change
methyl orange	3.1-4.4	red to yellow
bromthymol blue	6.0-7.6	yellow to blue
phenolphthalein	8–9	colorless to pink
litmus	4.5-8.3	red to blue
bromcresol green	3.8 - 5.4	yellow to blue
thymol blue	8.0-9.6	yellow to blue

Source: The Merck Index, 14th ed., 2006, Merck Publishing Group

1. Which indicator, when added to a solution, changes color from yellow to blue as the pH of the solution is changed from 5.5 to 8.0?

- (1) bromcresol green
- (2) bromthymol blue
- (3) litmus
- (4) methyl orange

2. Which indicator would best distinguish between a solution with a pH of 3.5 and a solution with a PH of 5.5?

- (1) bromthymol blue (3) litmus
- (2) bromcresol green (4) thymol blue
- 3. In which solution will bromcresol green appear blue?
 - (1) 1 M NaCI
 (3) 1 M NH₃
 (2) 1 M H₂CO₃
 (4) 1 M
 CH₃COOH
- 4. In which solution will thymol blue indicator appear blue?

(1) 0.1 M CH₃COOH	(3) 0.1 M KOH
(2) 0.1 M HCI	(4) 0.1 M H ₂ SO ₄

Ex: If you add bromthymol blue		
] to a solution with a pH of 8, it will be	
	 to a solution with a pH of 6, it will be	
Г	a solution with a pH of 4. it will be	

- 5. what is the color of the indicator methyl orange in a solution that has a pH of 2?
 - (1) blue (3) yellow
 - (2) orange (4) red
- 6. In a solution with a pH of 3, what color is bromcresol green?
 - (1) yellow (3) green
 - (2) blue (4) red
- The results of the student's work are recorded in the table below. Testing Results

Liquid Tested	Color of Blue Litmus Paper	Color of Phenolphthalein Paper	Measured pH Value Using a pH Meter
2% milk	blue	colorless	6.4
distilled water	blue	colorless	7.0
household ammonia	blue	pink	11.5
lemon juice	red	colorless	2.3
tomato juice	red	colorless	4.3
vinegar	red	colorless	3.3

- a) Identify the liquid tested that has the lowest hydronium ion concentration.
- b) Why is litmus not a good choice to differentiate the acidity levels of tomato juice and vinegar

_	
	If of acid and base are added together, the resulting solution is (pH) (very important to know!)
	The products of an acid and a base are: A Salt and WATER!!
	Ex: HCI (aq) + NaOH (aq) \rightarrow NaCI (aq) + H ₂ O (I)
P	redict the products of and balance the following reactions:
	$_H_2SO_4$ (aq) + $_NaOH$ (aq) → $$
	$\underline{\qquad} H_2CO_3 (aq) + \underline{\qquad} Ca(OH)_2 (aq) \rightarrow \underline{\qquad}$
	*Neutralization reactions are a type of reaction
1.	What are the products of a reaction between KOH(aq) and HCI(aq)? (1) H ₂ and KCIO (2) H ₂ O and KCI (3) KH and HCIO (4) KOH and HCI
2.	Which word equation represents a neutralization reaction? (1) base + acid →salt + water (2) base + salt →water + acid (3) salt + acid →base + water (4) salt + water →acid + base
3.	Which compound could serve as a reactant in a neutralization reaction?
	(1) NaCl (3) CH₃OH (2) KOH (4) CH₃CHO
4.	Which substance is always a product when an Arrhenius acid in an aqueous solution reacts with an Arrhenius base in an aqueous solution?

- (1) HBr (3) KBr (2) H₂O (4) KOH
- 5. Which reactants form the salt $CaSO_4(s)$ in a neutralization reaction?
 - (1) H₂S(g) and Ca(ClO₄)₂(s)
 (2) H₂SO₃(aq) and Ca(NO₃)₂(aq)
 (3) H₂SO₄(aq) and Ca(OH)₂(aq)
 (4) SO₂(g) and CaO(s

Practice:

1. In a titration, 20.0 milliliters of 0.15 M HCI(aq) is exactly neutralized by 18.0 milliliters of KOH(aq).

(a) Complete the equation below for the neutralization reaction by writing the formula of each product.

 $KOH(aq) + HCI(aq) \rightarrow _$ + _____

(b) Compare the number of moles of H⁺(aq) ions to the number of moles of OH⁻ (aq) ions in the titration mixture when the HCl(aq) is exactly neutralized by the KOH(aq).

(c) Determine the concentration of the KOH(aq).

2. In a laboratory activity, 0.500 mole of NaOH(s) is completely dissolved in distilled water to form 400. milliliters of NaOH(aq). This solution is then used to titrate a solution of HNO₃(aq).

(a) Identify the negative ion produced when the NaOH(s) is dissolved in distilled water.

(d) Complete the equation below representing this titration reaction by writing the formulas of the products.

 $NaOH(aq) + HNO_3(aq) \rightarrow ___ + ___$

⁽b) Calculate the molarity of the NaOH(aq). Your response must include both a correct numerical setup and the calculated result.

⁽c) If 26.4 milliliters of the NaOH solution is needed to exactly neutralize 44.0 milliliters of the HNO₃ solution, what is the molarity of the HNO₃ solution?