\qquad

Skills

1. Identifying PARTS OF A SOLUTION
2. Properties of Acids and Bases
3. Factors that affect solubility
4. Understand pH scale
5. Expressing Concentration and using table G
6. Measuring pH using table M
7. Calculating Molarity
8. Neutralization Reactions
9. Using PPM

11: Titrations
6. Colligative Properties

Vocab
Due Test Day

Word	
Homogeneous Mixture	
Solution	
Miscible	
$\underline{\text { Solute }}$	
Solvent	
Saturation	
$\underline{\text { Molarity }}$	
$\underline{\text { Acid }}$	
Base	
Types of Indicators	
Rydronium ion	
Neutralization	

Skill 1: Identify parts of a solution
Heterogeneous Mixture - substances in which particles are \qquad
Homogenous Mixture - substances in which particles are \qquad
\square Solute: substances that is being \qquad
\square Solvent: substances that \qquad
Skill 2: Factors that effect solubility:

Review! Ionic compounds can or cannot be soluble (dissolve in water). If it is soluble the phase is \qquad , if it is insoluble the phase is \qquad
Use Table \qquad to identify the phase!

1) PbCO_{3} \qquad 2) KNO_{3} \qquad

FACTORS AFFECTING Rate of SOLUBILITY (How much it dissolves)

Solubility: \qquad
Nature of Solute and Solvent: \qquad

Solution Type	Nonpolar Solvent	Polar Solvent
Nonpolar		
Polar		
Ionic		

1. Temperature:

- Solids: \qquad temperature, \qquad solubility (more solid will dissolve)
- Gases: \qquad temperature, \qquad solubility

2. Pressure:

- Only effects gases in liquids
- Gases: \qquad pressure, \qquad solubility

FACTORS AFFECTING RATE OF DISSOLUTION (How quickly it dissolves)

1. Size of particles: \qquad surface area, \qquad rate of solution)
2. Amount already dissolved: \qquad dissolved, \qquad rate)
3. Temperature:
a. Solids and Liquids: \qquad temperature, \qquad rate
b. Gases: \qquad temperature, \qquad rate

PRACTICE:

Solute Name	Solute Formula	Temperature			Pressure			Best Solvent	
	Low	High	Low	High	No Effect	$\mathrm{H}_{2} \mathrm{O}$	CCl_{4}		
		$\mathrm{KNO}_{3}(\mathrm{~s})$							

1. Saturated Solution

- Solution that contains the_______ at a given
amount of
temperature
प Saturated solutions are in
$\frac{\text { rate of recrystallization) }}{\text { (rate of dissolving = }}$

Indicating Behavior: \qquad

2. Unsaturated Solution

ㅁ Solution is holding \qquad
Indicating Behavior: \qquad

Unsaturated solution containing $100 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ and 30.0 g NaCl

3. Supersaturated Solution

ㅁ Solution is holding \qquad
ㅁ Unstable...
Indicating Behavior: \qquad

Using SOLUBILITY CURVES (FOUND ON TABLE)

Table G Shows: mass of solute that will dissolve in 100 g (or 100 mL) of water at different temperatures

How to Use Table \mathbf{G} to determine saturation at 100 g of $\mathrm{H}_{2} \mathrm{O}$:

1) Identify solute line on Table G
2) Find interception point between GRAMS given and Temperature Below Curve = \qquad
On Curve = \qquad
Above Curve = \qquad

Identify the following as being saturated, unsaturated, or supersaturated:
a. $20^{\circ} \mathrm{C}$ and 20 g of KNO_{3}
b. $40^{\circ} \mathrm{C}$ and 20 g of KClO_{3} \qquad
c. $90^{\circ} \mathrm{C}$ and 10 g of NH_{3} \qquad
d. $80 \mathrm{~g} \mathrm{NaNO}_{3}$ in $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $10^{\circ} \mathrm{C}$ \qquad
e. $75 \mathrm{~g} \mathrm{NaNO}_{3}$ in $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $10^{\circ} \mathrm{C}$ \qquad

How to Use Table G to determine saturation at $\mathbf{2 0 0} \mathrm{g}$ of $\mathrm{H}_{2} \mathrm{O}$:

3) Identify solute line on Table G
4) Determine the number of grams to saturate at 100 g
5) Double the number of grams needed for saturation (b/c H2O is doubled) Below Curve = \qquad On Curve = \qquad
Above Curve = \qquad
Extension: Get to saturation... find difference between given and needed amount!

Grams Solute per $200 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$	Saturation?	Grams Solute per $200 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$	Solute Added to make Saturated	$\begin{gathered} \text { Grams Solute } \\ \text { per } \\ 100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \end{gathered}$	Solute Added to make Saturated
e. 70 g NaCl at $90^{\circ} \mathrm{C}$		$\text { i. } 25 \mathrm{~g} \mathrm{NH}_{3} \text { at }$		$\begin{gathered} \text { a. } 35 \mathrm{~g} \mathrm{KNO}_{3} \\ \text { at } 40^{\circ} \mathrm{C} \end{gathered}$	
f. $10 \mathrm{~g} \mathrm{NH}_{3}$ at $90^{\circ} \mathrm{C}$		$\begin{gathered} \text { j. } 30 \mathrm{~g} \mathrm{NaNO}_{3} \text { at } \\ 50^{\circ} \mathrm{C} \end{gathered}$		b. $\begin{aligned} & 50 \mathrm{~g} \mathrm{NH}_{3} \\ & \text { at } 10^{\circ} \mathrm{C}\end{aligned}$	

How much will crystallize out of solution?

1) Identify solute line on Table G
2) Determine the number of grams to saturate at 100 g at initial temperature
3) Determine the number of grams to saturate at 100 g at final temperature
4) Find the difference between these values. This is how much will solidify given the temperature decrease.

Tell how many grams of each solute will crystallize/precipitate/settle. Assume all solutions are saturated and in 100 grams of $\mathrm{H}_{2} \mathrm{O}$.

Amount cooled	Amount Precipitated	Amount cooled	Amount Precipitated
a. $\mathrm{KNO}_{3}(\mathrm{aq})$ is cooled from $70^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$		e. $\mathrm{NaCl}(\mathrm{aq})$ is cooled from $100^{\circ} \mathrm{C} \mathrm{to} 40^{\circ} \mathrm{C}$	
b. $\mathrm{NH} \mathrm{Cl}(\mathrm{aq})$ is cooled from $90^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$		f. $\mathrm{KNO}_{3}(\mathrm{aq})$ is cooled from $65^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	

Concentration:

Molarity: \qquad
Equation (See Ref. Tabs.)

Examples:

1) What is molarity of a solution that contains 4.0 mol of NaOH in 0.50 L of solution?
2) Calculate the molarity of 2.0 moles of HCl dissolved in $500 . \mathrm{mL}$ solution.
3) Calculate the molarity of each of the following solutions:
(a) 2.5 mol of NaOH in 0.500 L of solution
(b) 1.8 L of solution containing $3.3 \mathrm{~mol} \mathrm{KNO}_{3}$
4) Calculate the total moles of solute in each of the following solutions:
(a) 1.7 L of 0.35 M NaOH
(b) 50 mL of 3.3-molar KNO_{3}
(c) 5.0 L of 1.25 M NaOH
(d) 116 mL of $1.5 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$

What is the molarity of a solution containing 82.0 g of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ in 2.0 L of solution?

Step 1: Convert grams to moles by finding the GFM

Step 2: Use the molarity equation
a) There is a 0.250 L solution with 53 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ completely dissolved. What is the molarity of the solution?
b) What is the Molarity of $30 . \mathrm{g}$ of NaOH in 0.500 L of solution

How to Make a Solution:

What mass of sodium carbonate is required to prepare 2.00 L of $0.250 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution?
Step 1: Find out how many moles are needed

Step 2: Convert moles to grams

Calculate the total grams of solute in each of the following solutions:
(a) 1.0 L of $0.5 \mathrm{M} \mathrm{CaCl}_{2}$
(b) 500 mL of 3.3 -molar KNO_{3}

Parts Per Million (ppm): \qquad

Equation (See Ref. Tabs.)

Example 1: Approximately 0.0043 g of oxygen can be dissolved in $100 . \mathrm{mL}$ of water at $20^{\circ} \mathrm{C}$. Express this in terms of parts per million.

Example 2: 2.5 grams of a groundwater solution are found to contain $5.4 \times 10^{-6} \mathrm{grams}$ of the Cu^{+2} ion. What is the concentration of the copper ion in ppm?

1. Calculate the concentration of chlorine in a swimming pool if there is 0.02 g of chlorine in $10,000 \mathrm{~g}$ of pool water.
2. Exposure to lead has been linked to delays in physical and mental development and attention deficit disorders in children as well as kidney problems in adults. One source of this toxic heavy metal is drinking water in older homes whose plumbing contains lead. Water with a lead concentration of below 0.015 ppm is considered safe to drink. A 100 g water sample taken from a home contains 1.2×10^{-6} grams of lead. Is this water considered safe to drink?
3. The health of fish depends on the amount of oxygen dissolved in the water. A dissolved oxygen (DO) concentration between 6 parts per million and 8 parts per million is best for fish health. A DO concentration greater than 1 part per million is necessary for fish survival. Fish health is also affected by water temperature and concentrations of dissolved ammonia, hydrogen sulfide, chloride compounds, and nitrate compounds.

A student's fish tank contains fish, green plants, and 3800 grams of fish-tank water with 2.7×10^{-2} gram of dissolved oxygen.
a.) State how an increase in the temperature of the fish-tank water affects the solubility of oxygen in the water.
b.) Determine if the DO concentration in the fish tank is healthy for fish in terms of ppm.
c.) Explain, in terms of molecular polarity, why oxygen gas has low solubility in water. Your response must include both oxygen and water.
d.) Under what kind of conditions of temperature and pressure would oxygen gas be most soluble in water?
e.) An aqueous solution has a concentration of 7 ppm of oxygen dissolved in 1000. grams of water. Calculate the amount of oxygen in the solution in grams. Your response must include both a correct numerical setup and the calculated result.
4. A safe level of fluoride ions is added to many public drinking water supplies. Fluoride ions have been found to help prevent tooth decay. Another common source of fluoride ions is toothpaste. One of the fluoride compounds used in toothpaste is tin(II) fluoride.

A town located downstream from a chemical plant was concerned about fluoride ions from the plant leaking into its drinking water. According to the Environmental Protection Agency, the fluoride ion concentration in drinking water cannot exceed 4 ppm . The town hired a chemist to analyze its water. The chemist determined that a 175-gram sample of the town's water contains 0.000250 gram of fluoride ions.
a. What is the chemical formula for tin(II) fluoride?
b. How many parts per million of fluoride ions are present in the analyzed sample?

Electrolyte $=$ A substance that produces \qquad when dissolved in a solution. Because the ions are FREE TO MOVE AROUND (\qquad) in the solution, the solution is able to \qquad electricity (salts).

$$
\begin{aligned}
& \begin{array}{l}
\text { When a solute is dissolved in a solvent, solvent molecules surround the particles of the solute. } \\
\text { This causes the boiling point and freezing point of the solution to change in a very specific } \\
\text { and predictable way. }
\end{array} \\
& \text { Boiling Point Elevation = b.p._ when solute is added } \\
& \qquad \text { Ex: Adding salt to water allows you to boil pasta at } 102-103^{\circ} \mathrm{C} \text { (cooks it faster) } \\
& \text { Freezing Point Depression = f.p. } \\
& \qquad \text { Ex: Putting salt on roads causes ice to melt because it drops freezing point below } 0^{\circ} \mathrm{C} .
\end{aligned}
$$

IONIC VS MOLECULAR SOLUTES: Why do we salt the roads in the winter rather than sugar them!

	MOLECULAR/ Covalent: $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$	IONIC: Salt (NaCl)
Reaction in water		
\# of Moles Produced		
General Rule: The sol will have a greate boilin	dissolves to form a great pression (f.p. will decreas elevation (b.p. will increa	mber of products (more) and a great more)

CaCl_{2} i\$ even better than NaCl , \$o why don't we u\$e it to \$alt our road\$? Becau\$e \qquad

1) Which of the following solutions will boil at the highest temperature?
a) 100 g NaCl in 1000 g of water
b) 100 g NaCl in 500 g water
c) 100 g NaCl in 250 g of water
d) 100 g NaCl in 125 g of water
2) Which solution has the highest boiling point?
a) 1.0 M KNO 3
b) 2.0 M KNO 3
c) 3.0 M C 6 H 12 O 6
d) $2.0 \mathrm{M} \mathrm{Ca}(\mathrm{NO} 3) 2$
3) Which of the following solutions will freeze at the lowest temperature?
a) 100 g NaCl in 150 g of water
b) 100 g NaCl in 600 g water
c) 100 g NaCl in 125 g of water
d) 100 g NaCl in 250 g of water

Time for some
 Ice

 Cream!!
Properties of solutions Practice Questions

1. Which solution has the highest boiling point?
(1) 0.5 M NaCl
(2) $0.5 \mathrm{M} \mathrm{CaCl}_{2}$
(3) $1.0 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
(4) $2.0 \mathrm{M} \mathrm{CH}_{3} \mathrm{OH}$
2. Compared to pure water, an aqueous solution of calcium chloride has a
(1) higher boiling point and higher freezing point
(2) higher boiling point and lower freezing point
(3) lower boiling point and higher freezing point
(4) lower boiling point and lower freezing point
3. Which solution has the highest boiling point?
(1) $1.0 \mathrm{M} \mathrm{KNO}_{3}$
(3) $1.0 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
(2) $2.0 \mathrm{M} \mathrm{KNO}_{3}$
(4) $2.0 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
4. Which solution has the lowest freezing point?
(1) $10 . \mathrm{g}$ of KI dissolved in 100 g of water
(2) $30 . \mathrm{g}$ of KI dissolved in 100 g of water
(3) 20. g of KI dissolved in 200. g of water
(4) 40. g of KI dissolved in 200. g of water
5. As water is added to a 0.10 M NaCl aqueous solution, the conductivity of the resulting solution
(1) decreases because the concentration of ions decreases
(2) decreases, but the concentration of ions remains the same
(3) increases because the concentration of ions decreases
(4) increases, but the concentration of ions remains the same
6. Which aqueous solution of KI freezes at the lowest temperature?
(1) 1 mol of Kl in 500 g of water
(3) 1 mol of KI in 1000. g of water
(2) 2 mol of Kl in 500 g g of water
(4) 2 mol of KI in 1000. g of water
7. Compared to a 5.0 M aqueous solution of KCl at 1 atmosphere, a 2.0 M aqueous solution of KCl at 1 atmosphere has a
(1) lower boiling point and a higher freezing point
(2) lower boiling point and a lower freezing point
(3) higher boiling point and a higher freezing point
(4) higher boiling point and a lower freezing point
8. Based on Reference Table F, which of these saturated solutions has the lowest concentration of dissolved ions?
(1) $\mathrm{NaCl}(\mathrm{aq})$
(2) $\mathrm{MgCl}_{2}(\mathrm{aq})$
(3) $\mathrm{NiCl}_{2}(\mathrm{aq})$
(4) $\mathrm{AgCl}(\mathrm{aq})$
9. Compared to a 0.1 M aqueous solution of NaCl a 0.8 M aqueous solution of NaCl has a
(1) higher boiling point and a higher freezing point
(2) higher boiling point and a lower freezing point
(3) lower boiling point and a higher freezing point
(4) lower boiling point and a lower freezing point

Skill 7: Properties of Acids \& Bases

\square The pH scale is a measure of the \qquad in a solution, Write concentration
\qquad
口"pH" stands for \qquad
\square Acids have a \qquad pH (a \qquad potential to attract H^{+}ions (\qquad)Bases have a \qquad pH (a \qquad potential to attract H^{+}ions (bases are \mathbf{H}^{+}

$\longrightarrow)$

The pH scale is logarithmic, which means that a change of ONE pH unit will change the concentration of H^{+}by a factor of $\qquad$$\square$ The hydrogen ion concentration changes by a factor of \qquad for EACH change of
\qquad pH unit

Hydronium Ion Concentration (M)

What is the relationship between pH value and hydrogen ion concentration?

More Acidic or More Basic?

	If an ACID is added...	If a BASE is added...
pH		
$\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$		
$\left[\mathrm{OH}^{-}\right]$		
Solution becomes...		

The pH is correlated to the concentration of H^{+}

pH	\mathbf{H}^{+}Concentration	Acidic or Basic
3		
7		
11		

Practice:

How much does the hydrogen/hydronium ion concentration change when the pH changes?
\square increasing or decreasing the pH by 1 changes the $\left[\mathrm{H}^{+}\right]$by a factor of \qquad
\square increasing or decreasing the pH by 2 changes the $\left[\mathrm{H}^{+}\right]$by a factor of \qquad
\square increasing or decreasing the pH by 3 changes the $\left[\mathrm{H}^{+}\right]$by a factor of \qquad

Ex: Describe what happens to the concentration of hydrogen ions in a solution if the pH is changed from 7 to 5.

Ex: Describe what is happening to the concentration of hydrogen ions in a solution if the pH is changed from 5 to 8.

pH Change	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ increase or decrease?	$\left[\mathrm{OH}^{-}\right]$ increase or decrease?	Does the solution become more acidic or basic?	By a factor of...
6 to 8				
8 to 5				
3 to 7				
11 to 9				
14 to 13				
4 to 8				

1. Which change in pH represents a hundredfold increase in the concentration of hydronium ions in a solution?
(1) pH 1 to pH 2
(3) pH 2 to pH 1
(2) pH 3 to pH 5
(4) pH 5 to pH 3
2. The pH of an aqueous solution changes from 4 to 3 when the hydrogen ion concentration in the solution is
(1) decreased by a factor of 100
(2) decreased by a factor of 10
(3) increased by a factor of 100
(4) increased by a factor of 10
3. Solution A has a pH of 3 and solution Z has a pH of 6 . How many times greater is the hydronium ion concentration in solution A than the hydronium ion concentration in solution Z?
(1) 100
(3) 3
(2) 2
(4) 1000
4. What is the pH of a solution that has a hydronium ion concentration 100 times greater than a solution with a pH of 4 ?
(1) 5
(3) 3
(2) 2
(4) 6

How to use Table M:

\square If the pH is below the first number, the solution will be \qquad
\square If the pH is above the second number, the solution will be \qquad
\square If the pH is between the numbers, the solution will be a \qquad

Indicator	Approximate pH Range for Color Change	Color Change
methyl orange	$3.1-4.4$	red to yellow
bromthymol blue	$6.0-7.6$	yellow to blue
phenolphthalein	$8-9$	colorless to pink
litmus	$4.5-8.3$	red to blue
bromcresol green	$3.8-5.4$	yellow to blue
thymol blue	$8.0-9.6$	yellow to blue

Source: The Merck Index, $14^{\text {th }}$ ed., 2006, Merck Publishing Group

1. Which indicator, when added to a solution, changes color from yellow to blue as the pH of the solution is changed from 5.5 to 8.0 ?
(1) bromcresol green
(2) bromthymol blue
(3) litmus
(4) methyl orange
2. Which indicator would best distinguish between a solution with a pH of 3.5 and a solution with a PH of 5.5 ?
(1) bromthymol blue
(3) litmus
(2) bromcresol green
(4) thymol blue
3. In which solution will bromcresol green appear blue?
(1) 1 M NaCl
(3) $1 \mathrm{M} \mathrm{NH}_{3}$
(2) $1 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$
(4) 1 M $\mathrm{CH}_{3} \mathrm{COOH}$
4. In which solution will thymol blue indicator appear blue?
(1) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
(3) 0.1 M KOH
(2) 0.1 M HCl
(4) $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

Ex: If you add bromthymol blue...
\square to a solution with a pH of 8, it will be
\qquad
\square to a solution with a pH of 6 , it will be
\square a solution with a pH of 4, it will be
\qquad
5. what is the color of the indicator methyl orange in a solution that has a pH of 2 ?
(1) blue
(3) yellow
(2) orange
(4) red
6. In a solution with a pH of 3, what color is bromcresol green?
(1) yellow
(3) green
(2) blue
(4) red
7. The results of the student's work are recorded in the table below.

Testing Results

Liquid Tested	Color of Blue Litmus Paper	Color of Phenolphthalein Paper	Measured pH Value Using a pH Meter
2% milk	blue	colorless	6.4
distilled water	blue	colorless	7.0
household ammonia	blue	pink	11.5
lemon juice	red	colorless	2.3
tomato juice	red	colorless	4.3
vinegar	red	colorless	3.3

a) Identify the liquid tested that has the lowest hydronium ion concentration.
b) Why is litmus not a good choice to differentiate the acidity levels of tomato juice and vinegar
\square If \qquad of acid and base are added together, the resulting solution is \qquad (pH) (very important to know!)
\square The products of an acid and a base are: A Salt and WATER!!

$$
\text { Ex: } \quad \mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Predict the products of and balance the following reactions:

\qquad $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\ldots \mathrm{NaOH}(\mathrm{aq}) \rightarrow$ \qquad
$\ldots \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+$ \qquad $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow$ \qquad
*Neutralization reactions are a type of \qquad reaction

1. What are the products of a reaction between $\mathrm{KOH}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$?
(1) H_{2} and KClO
(2) $\mathrm{H}_{2} \mathrm{O}$ and KCl
(3) KH and HClO
(4) KOH and HCl
2. Which word equation represents a neutralization reaction?
(1) base + acid \rightarrow salt + water
(2) base + salt \rightarrow water + acid
(3) salt + acid \rightarrow base + water
(4) salt + water \rightarrow acid + base
3. Which compound could serve as a reactant in a neutralization reaction?
(1) NaCl
(3) $\mathrm{CH}_{3} \mathrm{OH}$
(2) KOH
(4) $\mathrm{CH}_{3} \mathrm{CHO}$
4. Which substance is always a product when an Arrhenius acid in an aqueous solution reacts with an Arrhenius base in an aqueous solution?
(1) HBr
(3) KBr
(2) $\mathrm{H}_{2} \mathrm{O}$
(4) KOH
5. Which reactants form the salt $\mathrm{CaSO}_{4}(\mathrm{~s})$ in a neutralization reaction?
(1) $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ and $\mathrm{Ca}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{~s})$
(2) $\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$ and $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
(3) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ and $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$
(4) $\mathrm{SO}_{2}(\mathrm{~g})$ and CaO (s
\qquad
\qquad

\square Using the equation on Reference Table T, you can solve for either the
(M) OR the volume (V) of base needed to neutralize an acid

$$
\begin{array}{ll}
M_{A}=\text { molarity of } \mathrm{H}^{+} & V_{A}=\text { volume of acid } \\
M_{B}=\text { molarity of } \mathrm{OH}^{-} & V_{B}=\text { volume of base }
\end{array}
$$

Ex 1: A 25.0-milliliter sample of $\mathrm{HNO}_{3}(\mathrm{aq})$ is neutralized by 32.1 milliliters of 0.150 M KOH (aq). What is the concentration of the acid?

$$
M_{A} V_{A}=M_{B} V_{B}
$$

Ex 2: How many milliliters of 0.200 M NaOH are needed to neutralize $100 . \mathrm{mL}$ of 0.10 M HCl ?

$$
M_{A} V_{A}=M_{B} V_{B}
$$

Practice:

1.In a titration, 20.0 milliliters of $0.15 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ is exactly neutralized by 18.0 milliliters of $\mathrm{KOH}(\mathrm{aq})$.
(a) Complete the equation below for the neutralization reaction by writing the formula of each product.

$$
\mathrm{KOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow+\quad+
$$

(b) Compare the number of moles of $\mathrm{H}^{+}(\mathrm{aq})$ ions to the number of moles of $\mathrm{OH}^{-}(\mathrm{aq})$ ions in the titration mixture when the $\mathrm{HCl}(\mathrm{aq})$ is exactly neutralized by the $\mathrm{KOH}(\mathrm{aq})$.
(c) Determine the concentration of the $\mathrm{KOH}(\mathrm{aq})$.
2. In a laboratory activity, 0.500 mole of $\mathrm{NaOH}(\mathrm{s})$ is completely dissolved in distilled water to form 400. milliliters of $\mathrm{NaOH}(\mathrm{aq})$. This solution is then used to titrate a solution of $\mathrm{HNO}_{3}(\mathrm{aq})$.
(a) Identify the negative ion produced when the $\mathrm{NaOH}(\mathrm{s})$ is dissolved in distilled water.
(b) Calculate the molarity of the $\mathrm{NaOH}(\mathrm{aq})$. Your response must include both a correct numerical setup and the calculated result.
(c) If 26.4 milliliters of the NaOH solution is needed to exactly neutralize 44.0 milliliters of the HNO_{3} solution, what is the molarity of the HNO_{3} solution?
(d) Complete the equation below representing this titration reaction by writing the formulas of the products.

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \ldots
$$

