Name	Unit 4: Periodic Table	Period			
 History of the Periodic Table Language of the Periodic Table Identifying Types of Element 	Table 5. Identifying Pe				
Unit 4 Vocabulary	••••••	Due Test Day			
Word		Definition			
Mendeleev					
Noble Gas					
Malleable					
Period					
Group					
Metalloid					
Atomic Radius					
Ionic Radius					
Ionization Energy					
Electronegativity					
Allotrope					

Select ELEMENT SYMBOLS from the periodic table and write them on your board! Only use each element ONCE! Match your selections to the elements called!

ELEMENT BINGO Free Space

Essential Question: Why is it the "Periodic" Table?

Periodic → Periodic Law → Periodic Table								
□ Periodic means to occurs at	intervals							
☐ Periodic Law : The physical and chemical By atomic number!	☐ <u>Periodic Law</u> : The physical and chemical properties of the elements are periodic By atomic number!							
☐ Periodic Table of Elements : arranged by repeated or	and shows patterns in similar physical and chemical properties!							

	Ele	me	ent:
ш	пе	ш	∌MI.

- A pure substance one kind of ______
 Cannot be _____ into simpler substances
 90 occur naturally on earth
- 25 were synthesized (made) by scientists

☐ Dmitri Mendeleev (1860s)
----------------------	--------

- Referred to as the ______ of the Period
- Grouped elements according to

☐ Mendeleev's Predictions

- Mendeleev's Table had missing elements or "gaps," BUT he was able to predict the characteristics of these missing elements

"Ekasilicon" Prediction

Germanium Actual

Date Predicted	1871	Date Discovered	1886	
Atomic Mass	72	Atomic Mass	72.6	
Density	5.5 g/cm³	Density	5.47 g/cm ³	
Bonding Power	4	Bonding Power	4	
Color	Dark Gray	Color	Grayish White	

Notice how Mendeleev's predictions (orange column) were very accurate when compared to Germanium's actual characteristics (green column)

Henry Mosely (1914): The Dawn of the Modern Age

- ☐ Rearranged the elements by _____
- ☐ He determined # protons = atomic #
- 4. Determined how we **NOW** view the periodic table!

Language of the Periodic Table: Periods!

Period (Row): Each _____ row of elements on the periodic table

	1																	18	
1	1 H 1.008	2											13	14	15	16	17	2 He 4.003	How many periods
2	3 Li 6.941	4 Be _{9.012}				<	(=	>			5 B 10,811	6 <i>C</i>	7 N 14.007	8	9 F 18.998	10 Ne 20.180	(rows)
3	11 Na 22,990	12 Mg _{24,305}	3	4	5	6	7	8	9	10	11	12	13 Al _{26,982}	14 Si _{28,086}	15 P 30.974	16 5 _{32,066}	17 Cl 35,453	18 Ar 39.948	are on the
4	19 K _{39.098}	20 Ca 40.078	21 Sc 44.956	22 Ti 47.87	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni _{58.69}	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge _{72,61}	33 As _{74.922}	34 Se _{78.96}	35 Br 79.904	36 Kr 83.80	Periodic Table
5	37 Rb 85.468	38 Sr 87.62	39 y 88.906	40 Zr 91,224	41 Nb _{92,906}	42 Mo _{95.94}	43 Tc	44 Ru 101,07	45 Rh 102,906	46 Pd 106.42	47 Ag 107.868	48 Cd 112,4	49 In 114,818	50 Sn 118.710	51 Sb 121,760	52 Te 127,60	53 I 126,904	54 Xe 131.29	Of Elements?
6	55 <i>C</i> s	56 Ba 137,327	71 Lu 174,967	72 Hf	73 Ta 180.95	74 W 183.84	75 Re 186,207	76 Os 190,23	77 Ir	78 P† 195,078	79 Au 196.967	80 Hg _{200.59}	81 TI 204,383	82 Pb 207.2	83 Bi 208,980	84 Po (209)	85 A†	86 Rn (222)	
7	87 Fr	88 Ra (226)	103 Lr (262)	104 Rf	105 Db (262)	106 Sg	107 Bh (264)	108 Hs (269)	109 M† (268)	110 Ds	111 Rg	112 Uub (285)	113 Uut (284)	114 Uuq (289)	115 Uup (288)	116 Uuh (292)	117 Uus	118 Uuo	
	★La				57 La	58 Ce 140,116	59 Pr	60 Nd 144,24	61 Pm (145)	62 Sm _{150,36}	63 Eu _{151,964}	64 Gd	65 Tb	66 Dy _{162,50}	67 Ho	68 Er _{167,26}	69 Tm	70 Yb _{173.04}	
7	**	Act	inid	es	89 Ac (227)	90 Th 232,038	91 Pa 231,036	92 U 238,029	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	

FROM LEFT TO RIGHT OR RIGHT TO LEFT

Periodic Properties:

- Seven periods (numbered from the top down)
- as you move <u>from the left to the right</u> in a period
- - Period 1 = 1 energy level
 - Period 2 = 2 energy levels
 - Period 3 = 3 energy levels etc....

Practice:

- 1) What period are potassium and bromine in? _____
- 2) Based on the period, how many principal energy levels do potassium and bromine have?
- 3) What period is sodium and chlorine in? _____
- 4) Based on the period, how many principal energy levels do sodium and bromine have?

Language of the Periodic Table: Groups!

Group or Family: Each column of the _____ on the periodic Table.

1 2	1 H 1.008 3 Li 6.941	4 Be 9.012				(fo	amil e on	groies) the Tab	3	:			13 5 B	14 6 C	15 7 N 14.007	16 8 0 15.999	17 9 F 18.998	18 2 He 4.003 10 Ne 20.180	
3	11 Na 22,990	12 Mg _{24,305}	3	4	5	6	7	8	9	10	11	12	13 Al _{26,982}	14 Si _{28,086}	15 P 30.974	16 S 32,066	17 Cl 35,453	18 Ar _{39,948}	
4	19 K _{39.098}	20 Ca 40.078	21 Sc 44.956	22 Ti 47.87	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni _{58.69}	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge _{72,61}	33 As _{74,922}	34 Se _{78.96}	35 Br 79.904	36 Kr 83.80	
5	37 Rb 85.468	38 Sr 87.62	39 У 88.906	40 Zr 91,224	41 Nb _{92,906}	42 Mo _{95.94}	43 Tc	44 Ru 101.07	45 Rh 102,906	46 Pd 106.42	47 Ag	48 Cd 112,4	49 In	50 Sn 118,710	51 Sb 121,760	52 Te 127.60	53 I 126,904	54 Xe 131.29	↓
6	55 <i>C</i> s	56 Ba 137,327	71 Lu 174.967	72 Hf	73 Ta 180.95	74 W 183.84	75 Re 186,207	76 Os 190.23	77 Ir	78 P†	79 Au 196.967	80 Hg 200.59	81 TI 204,383	82 Pb 207.2	83 Bi 208.980	84 Po (209)	85 At (210)	86 Rn (222)	, v
7	87 Fr	88 Ra (226)	103 Lr (262)	104 Rf	105 Db (262)	106 Sg	107 Bh	108 Hs (269)	109 M† (268)	110 Ds	111 Rg	112 Uub (285)	113 Uut (284)	114 Uuq (289)	115 Uup (288)	116 Uuh (292)	117 Uus	118 Uuo	
	★ Lo				57 La 138,906 89 Ac (227)	58 Ce 140.116 90 Th 232.038	59 Pr 140,908 91 Pa 231,036	60 Nd 144.24 92 U	61 Pm (145) 93 Np (237)	62 Sm 150,36 94 Pu (244)	63 Eu 151,964 95 Am (243)	64 Gd 157,25 96 Cm (247)	65 Tb 158,925 97 Bk (247)	66 Dy 162.50 98 Cf (251)	67 Ho 164.990 99 Es (252)	68 Er 167,26 100 Fm (257)	69 Tm 168,934 101 Md (258)	70 Yb 173.04 102 No (259)	

FROM TOP TO BOTTOM OR BOTTOM TO THE TOP

Group (Family) Properties:

- Eighteen groups (numbered from left to right)
- Atomic # and masses ______.
- Atoms in same group have _____
 - Exceptions: d block and f block
- Similar _____ properties
 BECAUSE THEY HAVE THE SAME NUMBER OF _____

Practice:

- 1. Which sequence of atomic numbers represents elements, which have similar chemical properties?
 - A) 19, 23, 30, 36 C) 9, 16, 33, 50 B) 3, 12, 21, 40 D) 4, 12, 38, 88
- 2. Which two elements have the most similar chemical properties?

 - A) Aluminum and Barium

 C) Nickel and Phosphorous

 B) Chlorine and Sulfur

 D) Sodium and Potassium

Skill 3: Identifying Types of Elements

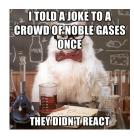
Metals, Groups 1-Zig Zag

Location	Chemical Prop.	Physical Prop.			
Left of "zig zag" or "staircase"	Few electrons in VALENCE shell (outer shell)	Ductile Malleable			
Does NOT include Hydrogen	Lose electrons easily ®	Good			
What metal is NOT solid	POSITIVE charge (Cations)	Shiny			
at Room Temperature?	Ex: Ca ²⁺	Solid at room temp!			

Ductile: Can be drawn into thin	(Characteristic of metals—think copper!)
Alloy: A metal made by give greater strength or resistance to corro	two or more metallic elements, especially to sion. Ex: Bronze or Steel

Non-Metals:

Location	Chemical Prop.	Physical Prop.
Right of "staircase"	Almost full, or totally full	NOT Ductile NOT malleable Not good conductors (insulators)
What non-metal is liquid at 273K?	Tend to electrons to form negative ions (anions).	Variety of phases of matter!
	Ex: F-1	Diatomic elements are all non- metals!


Allotrope: Two forms of the same element—Differentphysical properties i.e. diamond and graphite!	pattern yield different
Diatomic: Non-metals that naturally exist in BrINC	IHOF!

Metalloids:

Location	Chemical Prop.	Physical Prop.
Touch the "Staircase"	Most have half full valence shell	Have properties ofAND non
	Make anions OR cations depending on their environment	No predictable pattern of properties!

o Transition metals often form _____compounds and solutions.

Misc. Group	o 13-16	
□ Meta	ılloids are elements the sta	ircase.
How do we	e determine the state of matter at STP?	Highlight the
		Staircase
Group 17: H	lalogens	
□ Loca ∘	tion: In the group, beginning with	Color Black/Gray
□ Vale	nce Electrons:	THE HALOGEN GROUP
0	Each of them has electrons in their oute shell. This make one of the most reactive	r
	elements on the table.	
□ Char ∘	acteristics: is the most reactive in the group.	
	Several are (BrINCIHOF) Contain various phases of matter.	
Noble Gase	es, Group 18	
□ Loca		Color Purple
0	Noble gases are the group elements	THE NOBLE GASES
	nce Electrons: Each noble gas has a full shells, whic makes them very elements,	h
	They are also called the inert or	
0	gasesdo not react! Light bulbs are filled with Are in the phase of matter at STP	LTOLD A JOKE TO A CROWD OF NOBLE GASES ONCE

The Periodic Table is a map of the elements. There are many patterns or trends on the periodic table. Let's look and see what we can find!

renous, (nonzoniai	Periods: ((Horizontal
--------------------	------------	-------------

- Look at Na to Ar to answer the following questions. (Choose increases, decreases, or remains the same.)
- 2. The atomic # (Increases, decreases, or remains the same.)
- 3. The # of protons
- 4. The # of valence electrons
- 5. The # of principle energy levels _____
- 6. All elements in the same period have the same ______

Groups: (Vertical)

Look at H to Fr to answer the following questions. (Choose increases, decreases, or remains the same.)

- 1. The atomic # (increases, decreases, or remains the same.)
- 2. The # of protons _____
- 3. The # of valence electrons _____
- 4. The # of principle energy levels _____
- 5. All elements in the same group have the same _____ and therefore react similarly.

Answer:

- _____1. Which element would be expected to have chemical and physical properties closest to those of fluorine?
 - a. Fe B) Cl C) S D) Ne
- _____2. Chlorine and bromine have very similar chemical properties. This is best explained by the fact that both elements
 - A) have equal number of protons and electrons.
 - B) are gases.
 - C) are in period 3 of the Periodic Table.
 - D) have the same number of valence electrons.

Shielding:

electrons?

What effect does increasing

the number of protons have on

Teacher Check!

•		_		•	_	R	_	- 1	•	٠.
Δ	T	$\overline{}$	m	ч	~	ĸ	~	~	ш	•
$\boldsymbol{-}$	w	J		и	·	- 11	ч	ч	ш	٠.

Atomic Ra		
	c radius (or radii) is the distance from the ce	enter of the nucleus to the outer edge
of the ato	m.	
The atomi	c radius is affected by 2 things: the <u>numbe</u>	<u>r of</u>
	and the attraction between	and electrons.
Periods: (E	examine the elements in period 3)	
Na:	Radius # of principle energy levels	
	# of protons	The readius
	# of electrons	The radius
Si:	Radius	(increases or decreases)
Ji.	# of principle energy levels	as you go across a
	# of protons	period due to an increase
	# of electrons	in the number of PROTONS
CI:	Radius	<u>in nucleus pulling</u>
CI.	# of principle energy levels	<u>electrons closer</u>
	# of protons	
	# of electrons	
	gree with the understanding we have about	ut increasing number of protons?
Li:	Radius	The expeditue
	# of principle energy levels	The radius
	# of protons # of electrons	(increases or decreases)
	<i>" of disellers</i>	(
K:	Radius	as you go down a group
	# of principle energy levels	due to more energy levels
	# of protons	(shells of electrons)
	# of electrons	
Cs:	Radius	L
	# of principle energy levels	
	# of protons	Teacher Check!
	# of electrons	
Does this a	gree with the understanding we have abo	ut shielding?

Electronegativity:

	egativity is a m atom. (0-4 scc		of an <u>a</u>	tom's _			for e	electron	s in a bo	and with
Fill in the t values.	able below for	the ele	ments i	n Perioc	d 2 and	d Group	2 to not	e the g	eneral p	attern o
[Period 2 Eler	nents	Li	Be	В	С	N	0	F]
	Electronego									
In generc or decrec	nl, as you go ac ases)	ross a p	eriod, e	electron	egativ	/ity		,	(ir	ncreases
This is bec outermos	cause the numl t electrons <u>in</u> cr	oer of eases.	(proto	ns or ele	ectron	shells)	_increas	es, so a	ttractior	n to
		Gro	up 2 El	ements	E	lectrone	gativity			
			Ве							
			Mg							
			Ca							
			Sr							
			Ва							
In genero decrease	ıl, as you go do)	wn a gr	oup, ele	ectrone	gativi	У		_	(inc	crease or
	cause the numl t electrons <u>de</u> c		(proto	ons or ele	ectror		increase	es, so at	traction	to
	. Of the aton a. Br b. O c. Cl d. N e. F	ns below	/,	is 1	the mo	ost elect	ronegat	ive.		
	. Of the aton a. Rb b. F c. Si d. Cl e. Ca	ns below	/,	is 1	the led	ast elect	ronegat		cher Ch	eck!

<u> Ionization Energy:</u>

Ionization energy is the amount of energy required to	_ an
from an atom in the gaseous state.	

Period 2 Elements	Li	Ве	В	С	N	0	F
Ionization Energy							
(kJ/mol)							

In general, as you go across a period , ionization energy	_ (increases
or decreases)	

This is because the number of ______increases, so attraction to outermost electrons <u>in</u>creases. (protons or electron shells)

Group 2 Elements	lonization Energy (kJ/mol)
Ве	
Mg	
Ca	
Sr	
Ва	

*In general, as you go down a group , electronegativity and (increase or decrea	0,
This is because the number of increase outermost electrons <u>de</u> creases. (protons or electron shells)	ses, so attraction to
 Of the choices below, which gives the order for first ioning. CI > S > AI > Ar > Si Ar > CI > S > Si > AI Al > Si > S > CI > Ar C. AI > Si > S > CI > Ar CI > S > AI > Si > Ar E. S > Si > CI > Ar 	zation energies?
2. Of the following atoms, which has the largest <u>first</u> ioniza a. Br b. O	<u> </u>
c. C d. P e. I	Teacher Check!

		•	-			•	
\sim	n	~	v	~	\sim		ıs:
w	ш		1	u	ч	ı	

A cation is a positively charge	ed ion. It has lost electrons, so it has more positive negative electrons.	e protons than
Draw Bohr diagrams for c	an atom of Sodium and an ion of Sodium.	
Na	Na+	
Tita	1141	
Cations willin comparison to their atom.	electrons, therefore they will	in size
<u> </u>	ed ion. It has gained electron, so it has more ne	eaative
electron than positive protons.	-	9 -
Draw Bohr diagrams for c	an atom of Fluorine and an ion of Fluorine.	
F	F-	
Aniana will		in aire
Anions will	electrons, therefore they will	in size
Reactivity:		
Reactivity of metals will	as you move a g	roup and
across a period.Describe one e	example of this phenomena (Li vs Na) in terms of	of electrons
shells.		
Peactivity of non-matals will	as you may a right in a paried.	and
	as you move right in a period of cribe this phenomena (Br vs F) in terms of electrons	

Practice:	
b. c.	Atomic radius generally increases as we move down a group and from right to left across a period up a group and from left to right across a period up a group and from right to left across a period down a group; the period position has no effect
a. b. c. d.	F S
a. b. c. d.	Са
	P Br
l. m. n.	
7.	Complete the following trends: In general, as you go across a period in the periodic table from left to right: (1) the atomic radius; (2) the electronegativity; and (3) the first ionization energy