| Name | Unit 4: Periodic Table | Period | | | | |---|-------------------------|--------------|--|--|--| | History of the Periodic Table Language of the Periodic Table Identifying Types of Element | Table 5. Identifying Pe | | | | | | Unit 4 Vocabulary | •••••• | Due Test Day | | | | | Word | | Definition | | | | | Mendeleev | | | | | | | Noble Gas | | | | | | | Malleable | | | | | | | Period | | | | | | | Group | | | | | | | Metalloid | | | | | | | Atomic Radius | | | | | | | Ionic Radius | | | | | | | Ionization Energy | | | | | | | Electronegativity | | | | | | | Allotrope | | | | | | Select ELEMENT SYMBOLS from the periodic table and write them on your board! Only use each element ONCE! Match your selections to the elements called! # **ELEMENT BINGO** Free Space Essential Question: Why is it the "Periodic" Table? | Periodic → Periodic Law → Periodic Table | | | | | | | | | |---|---|--|--|--|--|--|--|--| | □ Periodic means to occurs at | intervals | | | | | | | | | ☐ Periodic Law : The physical and chemical By atomic number! | ☐ <u>Periodic Law</u> : The physical and chemical properties of the elements are periodic By atomic number! | | | | | | | | | ☐ Periodic Table of Elements : arranged by repeated or | and shows patterns in similar physical and chemical properties! | | | | | | | | | | Ele | me | ent: | |---|-----|----|------| | ш | пе | ш | ∌MI. | - A pure substance one kind of ______ Cannot be _____ into simpler substances 90 occur naturally on earth - 25 were synthesized (made) by scientists | ☐ Dmitri Mendeleev (| 1860s) | |----------------------|--------| |----------------------|--------| - Referred to as the ______ of the Period - Grouped elements according to #### ☐ Mendeleev's Predictions - Mendeleev's Table had missing elements or "gaps," BUT he was able to predict the characteristics of these missing elements ## "Ekasilicon" Prediction ## **Germanium** Actual | Date
Predicted | 1871 | Date
Discovered | 1886 | | |-------------------|-----------|--------------------|------------------------|--| | Atomic Mass | 72 | Atomic Mass | 72.6 | | | Density | 5.5 g/cm³ | Density | 5.47 g/cm ³ | | | Bonding
Power | 4 | Bonding
Power | 4 | | | Color | Dark Gray | Color | Grayish
White | | Notice how Mendeleev's predictions (orange column) were very accurate when compared to Germanium's actual characteristics (green column) ## Henry Mosely (1914): The Dawn of the Modern Age - ☐ Rearranged the elements by _____ - ☐ He determined # protons = atomic # - 4. Determined how we **NOW** view the periodic table! # Language of the Periodic Table: Periods! Period (Row): Each _____ row of elements on the periodic table | | 1 | | | | | | | | | | | | | | | | | 18 | | |---|------------------------------|--------------------------------------|---------------------|---------------------------|-------------------------------|------------------------------|---------------------------|--------------------|---------------------------|--------------------------------------|---------------------------------------|-------------------------------|-------------------------------|-------------------------------------|-------------------------------|-------------------------------------|--------------------|--------------------------------------|-------------------| | 1 | 1
H
1.008 | 2 | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 2
He
4.003 | How many periods | | 2 | 3
Li
6.941 | 4
Be
_{9.012} | | | | < | (| | = | > | | | 5
B
10,811 | 6
<i>C</i> | 7
N
14.007 | 8 | 9
F
18.998 | 10
Ne
20.180 | (rows) | | 3 | 11
Na
22,990 | 12
Mg
_{24,305} | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13
Al
_{26,982} | 14
Si
_{28,086} | 15
P
30.974 | 16
5
_{32,066} | 17
Cl
35,453 | 18
Ar
39.948 | are on
the | | 4 | 19
K
_{39.098} | 20
Ca
40.078 | 21
Sc
44.956 | 22
Ti
47.87 | 23
V
50.942 | 24
Cr
51.996 | 25
Mn
54.938 | 26
Fe
55.845 | 27
Co
58.933 | 28
Ni
_{58.69} | 29
Cu
63.546 | 30
Zn
65.39 | 31
Ga
69.723 | 32
Ge
_{72,61} | 33
As
_{74.922} | 34
Se
_{78.96} | 35
Br
79.904 | 36
Kr
83.80 | Periodic
Table | | 5 | 37
Rb
85.468 | 38
Sr
87.62 | 39
y
88.906 | 40
Zr
91,224 | 41
Nb
_{92,906} | 42
Mo
_{95.94} | 43
Tc | 44
Ru
101,07 | 45
Rh
102,906 | 46
Pd
106.42 | 47
Ag
107.868 | 48
Cd
112,4 | 49
In
114,818 | 50
Sn
118.710 | 51
Sb
121,760 | 52
Te
127,60 | 53
I
126,904 | 54
Xe
131.29 | Of
Elements? | | 6 | 55
<i>C</i> s | 56
Ba
137,327 | 71
Lu
174,967 | 72
Hf | 73
Ta
180.95 | 74
W
183.84 | 75
Re
186,207 | 76
Os
190,23 | 77
Ir | 78
P†
195,078 | 79
Au
196.967 | 80
Hg
_{200.59} | 81
TI
204,383 | 82
Pb
207.2 | 83
Bi
208,980 | 84
Po
(209) | 85
A† | 86
Rn
(222) | | | 7 | 87
Fr | 88
Ra
(226) | 103
Lr
(262) | 104
Rf | 105
Db
(262) | 106
Sg | 107
Bh
(264) | 108
Hs
(269) | 109
M†
(268) | 110
Ds | 111
Rg | 112
Uub
(285) | 113
Uut
(284) | 114
Uuq
(289) | 115
Uup
(288) | 116
Uuh
(292) | 117
Uus | 118
Uuo | | | | ★La | | | | 57
La | 58
Ce
140,116 | 59
Pr | 60
Nd
144,24 | 61
Pm
(145) | 62
Sm
_{150,36} | 63
Eu
_{151,964} | 64
Gd | 65
Tb | 66
Dy
_{162,50} | 67
Ho | 68
Er
_{167,26} | 69
Tm | 70
Yb
_{173.04} | | | 7 | ** | Act | inid | es | 89
Ac
(227) | 90
Th
232,038 | 91
Pa
231,036 | 92
U
238,029 | 93
Np
(237) | 94
Pu
(244) | 95
Am
(243) | 96
Cm
(247) | 97
Bk
(247) | 98
Cf
(251) | 99
Es
(252) | 100
Fm
(257) | 101
Md
(258) | 102
No
(259) | | #### FROM LEFT TO RIGHT OR RIGHT TO LEFT #### **Periodic Properties:** - Seven periods (numbered from the top down) - as you move <u>from the left to the right</u> in a period - - Period 1 = 1 energy level - Period 2 = 2 energy levels - Period 3 = 3 energy levels etc.... #### Practice: - 1) What period are potassium and bromine in? _____ - 2) Based on the period, how many principal energy levels do potassium and bromine have? - 3) What period is sodium and chlorine in? _____ - 4) Based on the period, how many principal energy levels do sodium and bromine have? # Language of the Periodic Table: Groups! Group or Family: Each column of the _____ on the periodic Table. | 1 2 | 1
H
1.008
3
Li
6.941 | 4
Be
9.012 | | | | (fo | amil
e on | groies)
the
Tab | 3 | : | | | 13
5
B | 14
6
C | 15
7
N
14.007 | 16
8
0
15.999 | 17
9
F
18.998 | 18
2
He
4.003
10
Ne
20.180 | | |-----|-------------------------------------|--------------------------------------|---------------------|--------------------|--|--|--|-------------------------------|--|---|--|---|--|---|--|--|---|--|----------| | 3 | 11
Na
22,990 | 12
Mg
_{24,305} | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13
Al
_{26,982} | 14
Si
_{28,086} | 15
P
30.974 | 16
S
32,066 | 17
Cl
35,453 | 18
Ar
_{39,948} | | | 4 | 19
K
_{39.098} | 20
Ca
40.078 | 21
Sc
44.956 | 22
Ti
47.87 | 23
V
50.942 | 24
Cr
51.996 | 25
Mn
54.938 | 26
Fe
55.845 | 27
Co
58.933 | 28
Ni
_{58.69} | 29
Cu
63.546 | 30
Zn
65.39 | 31
Ga
69.723 | 32
Ge
_{72,61} | 33
As
_{74,922} | 34
Se
_{78.96} | 35
Br
79.904 | 36
Kr
83.80 | | | 5 | 37
Rb
85.468 | 38
Sr
87.62 | 39
У
88.906 | 40
Zr
91,224 | 41
Nb
_{92,906} | 42
Mo
_{95.94} | 43
Tc | 44
Ru
101.07 | 45
Rh
102,906 | 46
Pd
106.42 | 47
Ag | 48
Cd
112,4 | 49
In | 50
Sn
118,710 | 51
Sb
121,760 | 52
Te
127.60 | 53
I
126,904 | 54
Xe
131.29 | ↓ | | 6 | 55
<i>C</i> s | 56
Ba
137,327 | 71
Lu
174.967 | 72
Hf | 73
Ta
180.95 | 74
W
183.84 | 75
Re
186,207 | 76
Os
190.23 | 77
Ir | 78
P† | 79
Au
196.967 | 80
Hg
200.59 | 81
TI
204,383 | 82
Pb
207.2 | 83
Bi
208.980 | 84
Po
(209) | 85
At
(210) | 86
Rn
(222) | , v | | 7 | 87
Fr | 88
Ra
(226) | 103
Lr
(262) | 104
Rf | 105
Db
(262) | 106
Sg | 107
Bh | 108
Hs
(269) | 109
M†
(268) | 110
Ds | 111
Rg | 112
Uub
(285) | 113
Uut
(284) | 114
Uuq
(289) | 115
Uup
(288) | 116
Uuh
(292) | 117
Uus | 118
Uuo | | | | ★ Lo | | | | 57
La
138,906
89
Ac
(227) | 58
Ce
140.116
90
Th
232.038 | 59
Pr
140,908
91
Pa
231,036 | 60
Nd
144.24
92
U | 61
Pm
(145)
93
Np
(237) | 62
Sm
150,36
94
Pu
(244) | 63
Eu
151,964
95
Am
(243) | 64
Gd
157,25
96
Cm
(247) | 65
Tb
158,925
97
Bk
(247) | 66
Dy
162.50
98
Cf
(251) | 67
Ho
164.990
99
Es
(252) | 68
Er
167,26
100
Fm
(257) | 69
Tm
168,934
101
Md
(258) | 70
Yb
173.04
102
No
(259) | | #### FROM TOP TO BOTTOM OR BOTTOM TO THE TOP ## **Group (Family) Properties:** - Eighteen groups (numbered from left to right) - Atomic # and masses ______. - Atoms in same group have _____ - Exceptions: d block and f block - Similar _____ properties BECAUSE THEY HAVE THE SAME NUMBER OF _____ #### Practice: - 1. Which sequence of atomic numbers represents elements, which have similar chemical properties? - A) 19, 23, 30, 36 C) 9, 16, 33, 50 B) 3, 12, 21, 40 D) 4, 12, 38, 88 - 2. Which two elements have the most similar chemical properties? - A) Aluminum and Barium C) Nickel and Phosphorous B) Chlorine and Sulfur D) Sodium and Potassium ## **Skill 3: Identifying Types of Elements** Metals, Groups 1-Zig Zag | Location | Chemical Prop. | Physical Prop. | | | | |----------------------------------|--|----------------------|--|--|--| | Left of "zig zag" or "staircase" | Few electrons in VALENCE shell (outer shell) | Ductile
Malleable | | | | | Does NOT include Hydrogen | Lose electrons easily ® | Good | | | | | What metal is NOT solid | POSITIVE charge (Cations) | Shiny | | | | | at Room Temperature? | Ex: Ca ²⁺ | Solid at room temp! | | | | | Ductile: Can be drawn into thin | (Characteristic of metals—think copper!) | |--|--| | Alloy: A metal made by give greater strength or resistance to corro | two or more metallic elements, especially to sion. Ex: Bronze or Steel | # Non-Metals: | Location | Chemical Prop. | Physical Prop. | |-----------------------------------|---|--| | Right of
"staircase" | Almost full, or totally full | NOT Ductile
NOT malleable
Not good conductors (insulators) | | What non-metal is liquid at 273K? | Tend to electrons to form negative ions (anions). | Variety of phases of matter! | | | Ex: F-1 | Diatomic elements are all non-
metals! | | Allotrope: Two forms of the same element—Differentphysical properties i.e. diamond and graphite! | pattern yield different | |--|-------------------------| | Diatomic: Non-metals that naturally exist in BrINC | IHOF! | ## Metalloids: | Location | Chemical Prop. | Physical Prop. | |-----------------------|---|---------------------------------------| | Touch the "Staircase" | Most have half full valence shell | Have properties ofAND non | | | Make anions OR cations depending on their environment | No predictable pattern of properties! | o Transition metals often form _____compounds and solutions. | Misc. Group | o 13-16 | | |-------------|--|---| | □ Meta | ılloids are elements the sta | ircase. | | How do we | e determine the state of matter at STP? | Highlight the | | | | Staircase | | | | | | Group 17: H | lalogens | | | □ Loca
∘ | tion: In the group, beginning with | Color
Black/Gray | | □ Vale | nce Electrons: | THE HALOGEN GROUP | | 0 | Each of them has electrons in their oute shell. This make one of the most reactive | r | | | elements on the table. | | | □ Char
∘ | acteristics: is the most reactive in the group. | | | | Several are (BrINCIHOF) Contain various phases of matter. | | | Noble Gase | es, Group 18 | | | □ Loca | | Color Purple | | 0 | Noble gases are the group elements | THE NOBLE GASES | | | nce Electrons: Each noble gas has a full shells, whic makes them very elements, | h | | | They are also called the inert or | | | 0 | gasesdo not react! Light bulbs are filled with Are in the phase of matter at STP | LTOLD A JOKE TO A
CROWD OF NOBLE GASES
ONCE | The Periodic Table is a map of the elements. There are many patterns or trends on the periodic table. Let's look and see what we can find! | renous, (nonzoniai | Periods: (| (Horizontal | |--------------------|------------|-------------| |--------------------|------------|-------------| - Look at Na to Ar to answer the following questions. (Choose increases, decreases, or remains the same.) - 2. The atomic # (Increases, decreases, or remains the same.) - 3. The # of protons - 4. The # of valence electrons - 5. The # of principle energy levels _____ - 6. All elements in the same period have the same ______ ### **Groups: (Vertical)** Look at H to Fr to answer the following questions. (Choose increases, decreases, or remains the same.) - 1. The atomic # (increases, decreases, or remains the same.) - 2. The # of protons _____ - 3. The # of valence electrons _____ - 4. The # of principle energy levels _____ - 5. All elements in the same group have the same _____ and therefore react similarly. #### Answer: - _____1. Which element would be expected to have chemical and physical properties closest to those of fluorine? - a. Fe B) Cl C) S D) Ne - _____2. Chlorine and bromine have very similar chemical properties. This is best explained by the fact that both elements - A) have equal number of protons and electrons. - B) are gases. - C) are in period 3 of the Periodic Table. - D) have the same number of valence electrons. **Shielding:** electrons? What effect does increasing the number of protons have on Teacher Check! | • | | _ | | • | _ | R | _ | - 1 | • | ٠. | |------------------|---|---------------|---|---|---|------|---|-----|---|----| | Δ | T | $\overline{}$ | m | ч | ~ | ĸ | ~ | ~ | ш | • | | $\boldsymbol{-}$ | w | J | | и | · | - 11 | ч | ч | ш | ٠. | | Atomic Ra | | | |-------------|--|--| | | c radius (or radii) is the distance from the ce | enter of the nucleus to the outer edge | | of the ato | m. | | | The atomi | c radius is affected by 2 things: the <u>numbe</u> | <u>r of</u> | | | and the attraction between | and electrons. | | Periods: (E | examine the elements in period 3) | | | | | | | Na: | Radius
of principle energy levels | | | | # of protons | The readius | | | # of electrons | The radius | | Si: | Radius | (increases or decreases) | | Ji. | # of principle energy levels | as you go across a | | | # of protons | period due to an increase | | | # of electrons | in the number of PROTONS | | CI: | Radius | <u>in nucleus pulling</u> | | CI. | # of principle energy levels | <u>electrons closer</u> | | | # of protons | | | | # of electrons | | | | gree with the understanding we have about | ut increasing number of protons? | | Li: | Radius | The expeditue | | | # of principle energy levels | The radius | | | # of protons
of electrons | (increases or decreases) | | | <i>" of disellers</i> | (| | K: | Radius | as you go down a group | | | # of principle energy levels | due to more energy levels | | | # of protons | (shells of electrons) | | | # of electrons | | | Cs: | Radius | L | | | # of principle energy levels | | | | # of protons | Teacher Check! | | | # of electrons | | | Does this a | gree with the understanding we have abo | ut shielding? | | | | | ## **Electronegativity:** | | egativity is a m
atom. (0-4 scc | | of an <u>a</u> | tom's _ | | | for e | electron | s in a bo | and with | |--------------------------|---|------------------|----------------|------------|---------|-----------|----------|-----------|-----------|-----------| | Fill in the t
values. | able below for | the ele | ments i | n Perioc | d 2 and | d Group | 2 to not | e the g | eneral p | attern o | | [| Period 2 Eler | nents | Li | Be | В | С | N | 0 | F |] | | | Electronego | | | | | | | | | | | In generc
or decrec | nl, as you go ac
ases) | ross a p | eriod, e | electron | egativ | /ity | | , | (ir | ncreases | | This is bec
outermos | cause the numl
t electrons <u>in</u> cr | oer of
eases. | (proto | ns or ele | ectron | shells) | _increas | es, so a | ttractior | n to | | | | Gro | up 2 El | ements | E | lectrone | gativity | | | | | | | | Ве | | | | | | | | | | | | Mg | | | | | | | | | | | | Ca | | | | | | | | | | | | Sr | | | | | | | | | | | | Ва | | | | | | | | | In genero
decrease | ıl, as you go do
) | wn a gr | oup, ele | ectrone | gativi | У | | _ | (inc | crease or | | | cause the numl
t electrons <u>de</u> c | | (proto | ons or ele | ectror | | increase | es, so at | traction | to | | | . Of the aton
a. Br
b. O
c. Cl
d. N
e. F | ns below | /, | is 1 | the mo | ost elect | ronegat | ive. | | | | | . Of the aton
a. Rb
b. F
c. Si
d. Cl
e. Ca | ns below | /, | is 1 | the led | ast elect | ronegat | | cher Ch | eck! | | <u> Ionization Energy:</u> | |----------------------------| |----------------------------| | Ionization energy is the amount of energy required to | _ an | |---|------| | from an atom in the gaseous state. | | | Period 2 Elements | Li | Ве | В | С | N | 0 | F | |-------------------|----|----|---|---|---|---|---| | Ionization Energy | | | | | | | | | (kJ/mol) | | | | | | | | | In general, as you go across a period , ionization energy | _ (increases | |--|--------------| | or decreases) | | This is because the number of ______increases, so attraction to outermost electrons <u>in</u>creases. (protons or electron shells) | Group 2 Elements | lonization
Energy
(kJ/mol) | |------------------|----------------------------------| | Ве | | | Mg | | | Ca | | | Sr | | | Ва | | | *In general, as you go down a group , electronegativity and
(increase or decrea | 0, | |---|-----------------------| | This is because the number of increase outermost electrons <u>de</u> creases. (protons or electron shells) | ses, so attraction to | | Of the choices below, which gives the order for first ioning. CI > S > AI > Ar > Si Ar > CI > S > Si > AI Al > Si > S > CI > Ar C. AI > Si > S > CI > Ar CI > S > AI > Si > Ar E. S > Si > CI > Ar | zation energies? | | 2. Of the following atoms, which has the largest <u>first</u> ioniza a. Br b. O | <u> </u> | | c. C
d. P
e. I | Teacher Check! | | | | • | - | | | • | | |--------|---|---|---|---|--------|---|-----| | \sim | n | ~ | v | ~ | \sim | | ıs: | | w | ш | | 1 | u | ч | ı | | | A cation is a positively charge | ed ion. It has lost electrons, so it has more positive negative electrons. | e protons than | |--|---|----------------| | Draw Bohr diagrams for c | an atom of Sodium and an ion of Sodium. | | | | | | | | | | | | | | | | | | | Na | Na+ | | | Tita | 1141 | | | Cations willin comparison to their atom. | electrons, therefore they will | in size | | <u> </u> | ed ion. It has gained electron, so it has more ne | eaative | | electron than positive protons. | - | 9 - | | Draw Bohr diagrams for c | an atom of Fluorine and an ion of Fluorine. | | | | | | | | | | | | | | | | | | | F | F- | | | | | | | Aniana will | | in aire | | Anions will | electrons, therefore they will | in size | | Reactivity: | | | | Reactivity of metals will | as you move a g | roup and | | across a period.Describe one e | example of this phenomena (Li vs Na) in terms of | of electrons | | shells. | | | | | | | | | | | | Peactivity of non-matals will | as you may a right in a paried. | and | | | as you move right in a period of cribe this phenomena (Br vs F) in terms of electrons | | | | | | | Practice: | | |----------------------|---| | b.
c. | Atomic radius generally increases as we move down a group and from right to left across a period up a group and from left to right across a period up a group and from right to left across a period down a group; the period position has no effect | | a.
b.
c.
d. | F
S | | a.
b.
c.
d. | Са | | | P
Br | | | | | l.
m.
n. | | | 7. | Complete the following trends: In general, as you go across a period in the periodic table from left to right: (1) the atomic radius; (2) the electronegativity; and (3) the first ionization energy |